com.intel.analytics.bigdl.models.autoencoder.Train.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.autoencoder
import java.nio.file.Paths
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.image._
import com.intel.analytics.bigdl.dataset.{DataSet, MiniBatch, Transformer}
import com.intel.analytics.bigdl.nn.{MSECriterion, Module}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric._
import com.intel.analytics.bigdl.utils.{Engine, OptimizerV1, OptimizerV2, T, Table}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
import scala.reflect.ClassTag
object toAutoencoderBatch {
def apply(): toAutoencoderBatch[Float] = new toAutoencoderBatch[Float]()
}
class toAutoencoderBatch[T: ClassTag](implicit ev: TensorNumeric[T]
)extends Transformer[MiniBatch[T], MiniBatch[T]] {
override def apply(prev: Iterator[MiniBatch[T]]): Iterator[MiniBatch[T]] = {
prev.map(batch => {
MiniBatch(batch.getInput().toTensor[T], batch.getInput().toTensor[T])
})
}
}
object Train {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
Logger.getLogger("breeze").setLevel(Level.ERROR)
import Utils._
def main(args: Array[String]): Unit = {
trainParser.parse(args, new TrainParams()).map(param => {
val conf = Engine.createSparkConf().setAppName("Train Autoencoder on MNIST")
val sc = new SparkContext(conf)
Engine.init
val trainData = Paths.get(param.folder, "/train-images-idx3-ubyte")
val trainLabel = Paths.get(param.folder, "/train-labels-idx1-ubyte")
val trainDataSet = DataSet.array(load(trainData, trainLabel), sc) ->
BytesToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) ->
GreyImgToBatch(param.batchSize) -> toAutoencoderBatch()
val model = if (param.modelSnapshot.isDefined) {
Module.load[Float](param.modelSnapshot.get)
} else {
if (param.graphModel) Autoencoder.graph(classNum = 32) else Autoencoder(classNum = 32)
}
if (param.optimizerVersion.isDefined) {
param.optimizerVersion.get.toLowerCase match {
case "optimizerv1" => Engine.setOptimizerVersion(OptimizerV1)
case "optimizerv2" => Engine.setOptimizerVersion(OptimizerV2)
}
}
val optimMethod = if (param.stateSnapshot.isDefined) {
OptimMethod.load[Float](param.stateSnapshot.get)
} else {
new Adagrad[Float](learningRate = 0.01, learningRateDecay = 0.0, weightDecay = 0.0005)
}
val optimizer = Optimizer(
model = model,
dataset = trainDataSet,
criterion = new MSECriterion[Float]()
)
if (param.checkpoint.isDefined) {
optimizer.setCheckpoint(param.checkpoint.get, Trigger.everyEpoch)
}
optimizer
.setOptimMethod(optimMethod)
.setEndWhen(Trigger.maxEpoch(param.maxEpoch))
.optimize()
sc.stop()
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy