com.intel.analytics.bigdl.models.autoencoder.Utils.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.autoencoder
import java.nio.ByteBuffer
import java.nio.file.{Files, Path}
import com.intel.analytics.bigdl.dataset.ByteRecord
import scopt.OptionParser
object Utils {
val trainMean = 0.13066047740239436
val trainStd = 0.30810779333114624
case class TrainParams(
folder: String = "./",
checkpoint: Option[String] = None,
modelSnapshot: Option[String] = None,
stateSnapshot: Option[String] = None,
batchSize: Int = 150,
maxEpoch: Int = 10,
graphModel: Boolean = false,
optimizerVersion: Option[String] = None
)
val trainParser = new OptionParser[TrainParams]("BigDL Autoencoder on MNIST") {
opt[String]('f', "folder")
.text("where you put the MNIST data")
.action((x, c) => c.copy(folder = x))
opt[String]("model")
.text("model snapshot location")
.action((x, c) => c.copy(modelSnapshot = Some(x)))
opt[String]("state")
.text("state snapshot location")
.action((x, c) => c.copy(stateSnapshot = Some(x)))
opt[String]("checkpoint")
.text("where to cache the model and state")
.action((x, c) => c.copy(checkpoint = Some(x)))
opt[Int]('b', "batchSize")
.text("batch size")
.action((x, c) => c.copy(batchSize = x))
opt[Int]('e', "maxEpoch")
.text("max epoch")
.action((x, c) => c.copy(maxEpoch = x))
opt[Unit]('g', "graphModel")
.text("use graph model")
.action((x, c) => c.copy(graphModel = true))
opt[String]("optimizerVersion")
.text("state optimizer version")
.action((x, c) => c.copy(optimizerVersion = Some(x)))
}
private[bigdl] def load(featureFile: Path, labelFile: Path): Array[ByteRecord] = {
val labelBuffer = ByteBuffer.wrap(Files.readAllBytes(labelFile))
val featureBuffer = ByteBuffer.wrap(Files.readAllBytes(featureFile))
val labelMagicNumber = labelBuffer.getInt()
require(labelMagicNumber == 2049)
val featureMagicNumber = featureBuffer.getInt()
require(featureMagicNumber == 2051)
val labelCount = labelBuffer.getInt()
val featureCount = featureBuffer.getInt()
require(labelCount == featureCount)
val rowNum = featureBuffer.getInt()
val colNum = featureBuffer.getInt()
val result = new Array[ByteRecord](featureCount)
var i = 0
while (i < featureCount) {
val img = new Array[Byte]((rowNum * colNum))
var y = 0
while (y < rowNum) {
var x = 0
while (x < colNum) {
img(x + y * colNum) = featureBuffer.get()
x += 1
}
y += 1
}
result(i) = ByteRecord(img, labelBuffer.get().toFloat + 1.0f)
i += 1
}
result
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy