com.intel.analytics.bigdl.models.inception.Test.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.inception
import com.intel.analytics.bigdl.dataset.{ByteRecord, DataSet}
import com.intel.analytics.bigdl.dataset.image._
import com.intel.analytics.bigdl.nn.Module
import com.intel.analytics.bigdl.optim.{Top1Accuracy, Top5Accuracy, Validator}
import com.intel.analytics.bigdl.utils.Engine
import org.apache.hadoop.io.Text
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
object Test {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
Logger.getLogger("breeze").setLevel(Level.ERROR)
import Options._
val imageSize = 224
def main(args: Array[String]) {
testParser.parse(args, new TestParams()).foreach { param =>
val batchSize = param.batchSize.getOrElse(128)
val conf = Engine.createSparkConf().setAppName("Test Inception on ImageNet")
val sc = new SparkContext(conf)
Engine.init
// We set partition number to be node*core, actually you can also assign other partitionNum
val partitionNum = Engine.nodeNumber() * Engine.coreNumber()
val rawData = sc.sequenceFile(param.folder, classOf[Text], classOf[Text], partitionNum)
.map(image => {
ByteRecord(image._2.copyBytes(), DataSet.SeqFileFolder.readLabel(image._1).toFloat)
}).coalesce(partitionNum, true)
val rddData = DataSet.SeqFileFolder.filesToRdd(param.folder, sc, 1000)
val transformer = BytesToBGRImg() -> BGRImgCropper(imageSize, imageSize, CropCenter) ->
HFlip(0.5) -> BGRImgNormalizer(0.485, 0.456, 0.406, 0.229, 0.224, 0.225) -> BGRImgToSample()
val evaluationSet = transformer(rddData)
val model = Module.load[Float](param.model)
val result = model.evaluate(evaluationSet,
Array(new Top1Accuracy[Float], new Top5Accuracy[Float]), param.batchSize)
result.foreach(r => println(s"${r._2} is ${r._1}"))
sc.stop()
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy