com.intel.analytics.bigdl.models.resnet.TestImageNet.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.resnet
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.DataSet
import com.intel.analytics.bigdl.dataset.image.CropCenter
import com.intel.analytics.bigdl.models.resnet.ResNet.DatasetType
import com.intel.analytics.bigdl.nn.{Module, StaticGraph}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric._
import com.intel.analytics.bigdl.transform.vision.image.{ImageFeature, MTImageFeatureToBatch, MatToTensor, PixelBytesToMat}
import com.intel.analytics.bigdl.transform.vision.image.augmentation.{ChannelScaledNormalizer, RandomCropper, RandomResize}
import com.intel.analytics.bigdl.utils._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
/**
* This example is to evaluate trained resnet50 with imagenet data and get top1 and top5 accuracy
*/
object TestImageNet {
LoggerFilter.redirectSparkInfoLogs()
Logger.getLogger("com.intel.analytics.bigdl.optim").setLevel(Level.INFO)
val logger = Logger.getLogger(getClass)
import Utils._
def main(args: Array[String]): Unit = {
testParser.parse(args, new TestParams()).map(param => {
val conf = Engine.createSparkConf().setAppName("Test model on ImageNet2012")
.set("spark.rpc.message.maxSize", "200")
val sc = new SparkContext(conf)
Engine.init
val model = Module.loadModule[Float](param.model)
val evaluationSet = ImageNetDataSet.valDataSet(param.folder,
sc, 224, param.batchSize).toDistributed().data(train = false)
val result = model.evaluate(evaluationSet,
Array(new Top1Accuracy[Float], new Top5Accuracy[Float]))
result.foreach(r => println(s"${r._2} is ${r._1}"))
sc.stop()
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy