All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.models.utils.ModelBroadcast.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.intel.analytics.bigdl.models.utils

import java.io.{IOException, ObjectInputStream, ObjectOutputStream}
import java.util.UUID

import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.Container
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.nn.mkldnn.{MklDnnLayer, TensorMMap}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.{Engine, MklDnn}
import com.intel.analytics.bigdl.utils.Util._
import com.intel.analytics.bigdl.utils.intermediate.IRGraph
import org.apache.commons.lang3.SerializationUtils
import org.apache.spark.SparkContext
import org.apache.spark.broadcast.Broadcast
import org.apache.zookeeper.KeeperException.UnimplementedException

import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag

/**
 * ModelBroadcast is used to broadcast model
 */
trait ModelBroadcast[T] extends Serializable {
  private val _uuid = UUID.randomUUID().toString

  /**
   * Broadcast the model
   * @param sc    SparkContext
   * @param model model to broadcast
   * @return this
   */
  def broadcast(sc: SparkContext, model: Module[T]): this.type

  private[bigdl] def broadcast(sc: SparkContext, model: Module[T],
    dummyInput: Activity): this.type = {
    throw new UnimplementedException
  }

  /**
   * Get the broadcast model on worker
   *
   * @param initGradient If create a tensor for gradient when fetch the model. Please note that
   *                     the gradient is not needed in model inference
   * @return model
   */
  def value(initGradient: Boolean = false, shareWeight: Boolean = true): Module[T]

  private[bigdl] def value(initGradient: Boolean, shareWeight: Boolean,
    dummyInput: Activity): Module[T] = {
    throw new UnimplementedException
  }

  def uuid(): String = _uuid
}

object ModelBroadcast {
  def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): ModelBroadcast[T] = {
    if (System.getProperty("bigdl.ModelBroadcastFactory") != null) {
      val cls = Class.forName(System.getProperty("bigdl.ModelBroadcastFactory"))
      cls.getConstructors()(0).newInstance().asInstanceOf[ModelBroadcastFactory].create()
    } else {
      new DefaultModelBroadcastFactory().create()
    }
  }
}

/**
 * ModelBroadcast is used to broadcast model.
 *
 * Note: If you want to use this to broadcast training model, please use value(true) to get
 * the model. And before broadcasting please make sure the model's parameter is compacted.
 *
 * @tparam T data type
 * @param applyProtoBuffer it will use proto buffer serialization for broadcasting if set true
 */
private[bigdl] class ModelBroadcastImp[T: ClassTag](applyProtoBuffer: Boolean = false)
  (implicit ev: TensorNumeric[T]) extends ModelBroadcast[T] {

  private type NativeType = (String, (Array[TensorMMap], Array[TensorMMap]))
  private var broadcastModel: Broadcast[ModelInfo[T]] = _
  private var broadcastConsts: Broadcast[Map[String, Tensor[_]]] = _
  private var broadcastParameters: Broadcast[Array[Tensor[T]]] = _
  private var broadcastParametersNative: Broadcast[Array[NativeType]] = _
  private var nodeNumber : Int = _
  private var coreNumber : Int = _

  private def setNodeAndCore(): Unit = {
    nodeNumber = Engine.nodeNumber()
    coreNumber = Engine.coreNumber()
  }
  /**
   * broadcast the model
   * first get and clear Const values from the model
   * then get and clear the weight and bias parameters from the model
   * finally broadcast Const values, the parameters and model(without parameters) separately
   * @param sc    SparkContext
   * @param model model to broadcast
   * @return this
   */
  override def broadcast(sc: SparkContext, model: Module[T]): this.type = {
    CachedModels.deleteAll(uuid) // delete the models on driver

    if (applyProtoBuffer) {
      broadcastModel = sc.broadcast(ModelInfo(uuid, model))
    } else {
      // broadcast Consts
      if (model.isInstanceOf[Container[_, _, T]]) {
        val moduleConsts = getAndClearConsts(model.asInstanceOf[Container[_, _, T]])
        // TODO: broadcast Const, model structure and weight in the same broadcast.
        broadcastConsts = sc.broadcast(moduleConsts)
      }
      // broadcast weight and model
      val weightsBias = getAndClearWeightBias(model.parameters())
      broadcastModel = sc.broadcast(ModelInfo[T](uuid, model))
      broadcastParameters = sc.broadcast(weightsBias)

      // For quantized model if we don't clone weightsBias, the original model will be released also
      // when we delete all models used in `ModelBroadcast`.
      putWeightBias(cloneParameters(weightsBias), model)
      initGradWeightBias(weightsBias, model)
    }
    setNodeAndCore()
    this
  }

  /**
   * get the broadcast model
   * put the weight and bias back to the model
   *
   * @param initGradient If create a tensor for gradient when fetch the model. Please note that
   *                     the gradient is not needed in model inference
   * @return model
   */
  override def value(initGradient: Boolean = false, shareWeight: Boolean = true): Module[T] = {
    Engine.setNodeAndCore(nodeNumber, coreNumber)
    CachedModels.deleteAll(uuid)
    if (applyProtoBuffer) {
      val localModel = broadcastModel.value.model.clone(false)
      val uuid = broadcastModel.value.uuid
      CachedModels.add(uuid, localModel)

      if (initGradient) {
        initGradWeightBias(getWeightBias(localModel.parameters()), localModel)
      }
      localModel
    } else {
      val localModel = broadcastModel.value.model.cloneModule()
      val uuid = broadcastModel.value.uuid
      CachedModels.add(uuid, localModel)

      val parameters = if (shareWeight) {
        broadcastParameters.value
      } else {
        cloneParameters(broadcastParameters.value)
      }

      // share weight
      putWeightBias(parameters, localModel)
      // share Consts
      if (localModel.isInstanceOf[Container[_, _, T]] && broadcastConsts.value.nonEmpty) {
        putConsts(localModel.asInstanceOf[Container[_, _, T]], broadcastConsts.value)
      }
      // init gradient
      if (initGradient) {
        initGradWeightBias(broadcastParameters.value, localModel)
      }
      localModel
    }
  }

  private def getWeightBias(parameters: (Array[Tensor[T]], Array[Tensor[T]]))
  : Array[Tensor[T]] = {
    if (parameters._1.length != 0) {
      var i = 0
      val weightsBias = new Array[Tensor[T]](parameters._1.length)
      val isQuantized = parameters._1.exists(_.getTensorType == QuantizedType)
      val (isCompacted, storage) = if (!isQuantized) {
        val storage = Storage(parameters._1(0).storage.array())
        (parameters._1.map(_.nElement()).sum == storage.length(), storage)
      } else {
        (false, null)
      }

      // get weight and bias
      while (i < parameters._1.length) {
        if (parameters._1(i) != null) {
          val wb = parameters._1(i)
          wb.getTensorType match {
            case QuantizedType =>
              val quantTensor = wb.asInstanceOf[QuantizedTensor[T]]
              weightsBias(i) = QuantizedTensor[T](quantTensor.getStorage, quantTensor.maxOfRow,
                quantTensor.minOfRow, quantTensor.sumOfRow, quantTensor.size(), quantTensor.params)
            case _ =>
              weightsBias(i) = if (isCompacted) {
                Tensor[T](storage, wb.storageOffset(), wb.size(), wb.stride())
              } else {
                Tensor[T](Storage(wb.storage().array()), wb.storageOffset(), wb.size(), wb.stride())
              }
          }
          i += 1
        }
      }
      weightsBias
    } else {
      // just return an empty array when parameters is empty.
      Array()
    }
  }

  private def getTensorMMaps(ir: IRGraph[T]) = {
    ir.graph
      .getSortedForwardExecutions()
      .filter(_.element.isInstanceOf[MklDnnLayer])
      .map { node =>
        val element = node.element
        val name = element.getName()
        val tensorMMap = element.asInstanceOf[MklDnnLayer].paramsMMap()
        (name, tensorMMap)
      }
  }

  override def broadcast(sc: SparkContext, model: Module[T],
    dummyInput: Activity): this.type = {
    if (model.isInstanceOf[IRGraph[T]] && Engine.getEngineType() == MklDnn &&
      Engine.isMultiModels) {
      val clonedModel = model.asInstanceOf[IRGraph[T]].cloneModule()
      clonedModel.forward(dummyInput)

      broadcastParametersNative = sc.broadcast(getTensorMMaps(clonedModel))
    }

    this.broadcast(sc, model)
    this
  }

  override def value(initGradient: Boolean, shareWeight: Boolean,
    dummyInput: Activity): Module[T] = {
    val model = value(initGradient, shareWeight)

    if (model.isInstanceOf[IRGraph[T]] && Engine.getEngineType() == MklDnn &&
      Engine.isMultiModels) {
      model.forward(dummyInput)

      if (shareWeight) {
        getTensorMMaps(model.asInstanceOf[IRGraph[T]]).zip(broadcastParametersNative.value)
          .foreach { case (src, dst) =>
            if (src._1 == dst._1) {
              src._2._1.zip(dst._2._1)
                .filter(x => x._1 != null && x._2 != null)
                .foreach{ case (x, y) => x.setNative(y) }
            }
          }
      }
    }
    model
  }
}

private[bigdl] class ModelInfo[T: ClassTag](val uuid: String, @transient var model: Module[T])(
  implicit ev: TensorNumeric[T]) extends Serializable {
  @throws(classOf[IOException])
  private def writeObject(out: ObjectOutputStream): Unit = {
    out.defaultWriteObject()
    val cloned = model.cloneModule()
    out.writeObject(cloned)
    CachedModels.add(uuid, cloned)
  }

  @throws(classOf[IOException])
  private def readObject(in: ObjectInputStream): Unit = {
    in.defaultReadObject()
    model = in.readObject().asInstanceOf[Module[T]]
    CachedModels.add(uuid, model)
  }
}

object ModelInfo {
  def apply[T: ClassTag](uuid: String, model: Module[T])(
    implicit ev: TensorNumeric[T]): ModelInfo[T] = new ModelInfo[T](uuid, model)
}

object CachedModels {
  import java.util.concurrent.ConcurrentHashMap

  import scala.collection._
  import scala.collection.convert.decorateAsScala._
  import scala.language.existentials

  type Modles = ArrayBuffer[Module[_]]

  private val cachedModels: concurrent.Map[String, Modles] =
    new ConcurrentHashMap[String, Modles]().asScala

  def add[T: ClassTag](uuid: String, model: Module[T])( implicit ev: TensorNumeric[T]): Unit =
    CachedModels.synchronized {
      val models = cachedModels.get(uuid) match {
        case Some(values) => values += model.asInstanceOf[Module[_]]
        case _ => ArrayBuffer(model.asInstanceOf[Module[_]])
      }
      cachedModels.put(uuid, models.asInstanceOf[Modles])
    }

  def deleteAll[T: ClassTag](currentKey: String)(implicit ev: TensorNumeric[T]): Unit =
    CachedModels.synchronized {
      val keys = cachedModels.keys
      for (key <- keys) {
        if (key != currentKey) {
          val models = cachedModels(key)
          for (model <- models) {
            model.release()
          }
          cachedModels.remove(key)
        }
      }
    }

  def deleteKey[T: ClassTag](key: String)(implicit ev: TensorNumeric[T]): Unit =
    CachedModels.synchronized {
      val keys = cachedModels.keys
      for (k <- keys) {
        if (k == key) {
          val models = cachedModels(key)
          for (model <- models) {
            model.release()
          }
          cachedModels.remove(key)
        }
      }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy