com.intel.analytics.bigdl.nn.BCECriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, Tensor, TensorFunc4, TensorFunc6}
import scala.reflect.ClassTag
/**
* This loss function measures the Binary Cross Entropy between the target and the output
* loss(o, t) = - 1/n sum_i (t[i] * log(o[i]) + (1 - t[i]) * log(1 - o[i]))
* or in the case of the weights argument being specified:
* loss(o, t) = - 1/n sum_i weights[i] * (t[i] * log(o[i]) + (1 - t[i]) * log(1 - o[i]))
*
* By default, the losses are averaged for each mini-batch over observations as well as over
* dimensions. However, if the field sizeAverage is set to false, the losses are instead summed.
* @param weights weights over the input dimension
* @param sizeAverage avgerage or not in each mini-batch
* @param ev numeric operator
* @tparam T numeric type
*/
@SerialVersionUID(- 1953992758534446600L)
class BCECriterion[@specialized(Float, Double) T: ClassTag]
(val weights: Tensor[T] = null, sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
private val eps = 1e-12
val buffer: Tensor[T] = Tensor[T]()
val onesBuffer: Tensor[T] = Tensor[T]()
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
require(input.size().sameElements(target.size()),
s"input size should be equal to target size, but got input size: ${input.size().toList}," +
s" target size: ${target.size().toList}")
if (weights != null) {
if (weights.nDimension() < input.nDimension()) {
require(weights.size().sameElements(input.size().tail),
s"weights size should be equal to input size or input size's tail, but got" +
s" input size: ${input.size().toList}, weights size: ${weights.size().toList}")
} else if (weights.nDimension() == input.nDimension()) {
require(weights.size().sameElements(input.size()),
s"weights size should be equal to input size or input size's tail, but got" +
s" input size: ${input.size().toList}, weights size: ${weights.size().toList}")
} else {
throw new IllegalArgumentException(
s"weights size should be equal to input size or input size's tail, but got" +
s" input size: ${input.size().toList}, weights size: ${weights.size().toList}")
}
}
var sum = 0.0
if (null != weights) {
buffer.resizeAs(input).copy(input).add(ev.fromType(eps)).log()
// cmul support broadcasting
buffer.cmul(weights)
sum += ev.toType[Double](buffer.dot(target))
buffer.fill(ev.one).sub(input).add(ev.fromType(eps)).log().cmul(weights)
sum -= ev.toType[Double](buffer.dot(target))
if (onesBuffer.nElement() != buffer.nElement()) {
onesBuffer.resizeAs(buffer).fill(ev.one)
}
sum += ev.toType[Double](buffer.dot(onesBuffer))
} else {
buffer.resizeAs(input).copy(input).add(ev.fromType(eps)).log()
sum += ev.toType[Double](buffer.dot(target))
buffer.fill(ev.one).sub(input).add(ev.fromType(eps)).log()
sum -= ev.toType[Double](buffer.dot(target))
if (onesBuffer.nElement() != buffer.nElement()) {
onesBuffer.resizeAs(buffer).fill(ev.one)
}
sum += ev.toType[Double](buffer.sum())
}
if (sizeAverage) sum /= input.nElement()
output = ev.fromType[Double](-sum)
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
require(input.nElement() == target.nElement(),
"input and target should have the same dims." +
s"input dim(${input.nElement()})" +
s"target dim(${target.nElement()})")
val nElement = input.nElement()
val norm = if (sizeAverage) 1.0 / nElement else 1.0
gradInput.resizeAs(input)
// gradInput = -norm * (y - x) / ((1.0 - x + eps) * (x + eps))
// - (1 - x + eps)*(x + eps) = x^2 - x - eps - eps^2
// eps^12 is negligible
buffer.pow(input, ev.fromType(2)).sub(input).sub(ev.fromType(eps))
gradInput.copy(target).sub(input).cdiv(buffer).mul(ev.fromType(norm))
if (null != weights) {
// cmul support broadcasting
gradInput.cmul(weights)
}
gradInput
}
}
object BCECriterion {
def apply[@specialized(Float, Double) T: ClassTag](
weights: Tensor[T] = null,
sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : BCECriterion[T] = {
new BCECriterion[T](weights, sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy