com.intel.analytics.bigdl.nn.BifurcateSplitTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Creates a module that takes a Tensor as input and
* outputs two tables, splitting the Tensor along
* the specified dimension `dimension`.
*
* The input to this layer is expected to be a tensor, or a batch of tensors;
*
* @param dimension to be split along this dimension
* @tparam T Numeric type. Only support float/double now
*/
class BifurcateSplitTable[T: ClassTag](
var dimension: Int)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[T], Table, T]{
val left = Tensor[T]()
val right = Tensor[T]()
override def updateOutput(input: Tensor[T]): Table = {
val slices = input.size(dimension)
require(slices >= 1,
s"BifurcateSplitTable: the size of referred dimension is ${slices}. " +
s"It should be larger than 1.")
val leftSlices = slices >> 1
val rightSlices = slices - leftSlices
val leftSlice = input.narrow(dimension, 1, leftSlices)
val rightSlice = input.narrow(dimension, 1 + leftSlices, rightSlices)
left.resizeAs(leftSlice).copy(leftSlice)
right.resizeAs(rightSlice).copy(rightSlice)
output(1) = left
output(2) = right
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Table): Tensor[T] = {
val slices = input.size(dimension)
val leftSlices = slices >> 1
val rightSlices = slices - leftSlices
gradInput.resizeAs(input)
gradInput.narrow(dimension, 1, leftSlices).copy(gradOutput(1))
gradInput.narrow(dimension, 1 + leftSlices, rightSlices).copy(gradOutput(2))
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[SplitTable[T]]
override def clearState() : this.type = {
super.clearState()
left.set()
right.set()
this
}
override def toString: String = s"BifurcateSplitTable($dimension)"
override def equals(other: Any): Boolean = other match {
case that: BifurcateSplitTable[T] =>
super.equals(that) &&
(that canEqual this) &&
dimension == that.dimension
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dimension)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object BifurcateSplitTable {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int)(implicit ev: TensorNumeric[T]) : BifurcateSplitTable[T] = {
new BifurcateSplitTable[T](dimension)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy