com.intel.analytics.bigdl.nn.CAddTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import javax.print.attribute.standard.MediaSize.Other
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import com.intel.analytics.bigdl.utils.serializer.{DeserializeContext, ModuleSerializable}
import org.apache.hadoop.yarn.webapp.hamlet.HamletSpec.VAR
import scala.reflect._
/**
* Merge the input tensors in the input table by element wise adding them together. The input table
* is actually an array of tensor with same size.
* @param inplace reuse the input memory
* @param ev numeric operator
* @tparam T Numeric type. Only support float/double now
*/
@SerialVersionUID(7959261460060075605L)
class CAddTable[T: ClassTag, D: ClassTag](val inplace: Boolean = false)(
implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends AbstractModule[Table, Tensor[D], T] with MklInt8Convertible {
output = Tensor[D]()
@transient
private var bufferSumInput: Tensor[D] = null
@transient
private var bufferSumOutput: Tensor[D] = null
private def canExpand(inputSize: Array[Int], targetSize: Array[Int]): Boolean = {
var d = inputSize.length - 1
val diff = targetSize.length - inputSize.length
while(d >= 0) {
if (inputSize(d) != 1 && inputSize(d) != targetSize(d + diff)) {
return false
}
d -= 1
}
return true
}
private def sumAlongDims(tensor: Tensor[D], other: Tensor[D]): Tensor[D] = {
val diff = other.nDimension() - tensor.nDimension()
val size = tensor.size()
var target: Tensor[D] = other
if (bufferSumOutput == null) bufferSumOutput = Tensor[D]()
if (bufferSumInput == null) bufferSumInput = Tensor[D]()
var i = 0
while (i < other.nDimension()) {
if (i < diff) {
bufferSumOutput.sum(target, i + 1)
target = bufferSumInput.resizeAs(bufferSumOutput).copy(bufferSumOutput)
} else if (size(i - diff) == 1) {
bufferSumOutput.sum(target, i + 1)
target = bufferSumInput.resizeAs(bufferSumOutput).copy(bufferSumOutput)
}
i += 1
}
target
}
override def updateOutput(input: Table): Tensor[D] = {
var scalar = ev2.zero
var hasTensor = false
var hasScalar = false
var initTensor = false
var i = 1
while (i <= input.length()) {
val curTensor = input[Tensor[D]](i)
if (curTensor.isScalar) {
scalar = ev2.plus(scalar, curTensor.value())
hasScalar = true
} else if (curTensor.isTensor) {
if (initTensor) {
output = output.add(curTensor)
} else {
if (inplace) {
output.set(curTensor)
} else {
output.resizeAs(curTensor).copy(curTensor)
}
initTensor = true
}
hasTensor = true
}
i += 1
}
if (hasTensor && hasScalar) {
output.add(scalar)
} else if (hasScalar) {
if (inplace) {
output.set(input[Tensor[D]](1)).setValue(scalar)
} else {
output.resizeAs(input[Tensor[D]](1)).setValue(scalar)
}
}
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[D]) : Table = {
var i = 1
var sum = ev2.zero
var calculateSum = false
while (i <= input.length()) {
if (i > gradInput.length) gradInput.insert(i, Tensor[T]().resizeAs(input(1)))
if (inplace) {
require(input[Tensor[D]](1).isSameSizeAs(gradOutput), "cannot use inplace for broadcast")
gradInput[Tensor[D]](i).set(gradOutput)
} else {
if (input[Tensor[D]](i).isSameSizeAs(gradOutput)) {
gradInput[Tensor[D]](i).resizeAs(gradOutput).copy(gradOutput)
} else if (canExpand(input[Tensor[D]](i).size(), gradOutput.size())) {
gradInput[Tensor[D]](i).resizeAs(input[Tensor[D]](i)).copy(
sumAlongDims(input[Tensor[D]](i), gradOutput))
} else {
require(input[Tensor[D]](i).isScalar, "Only support scalar broadcast backward now")
if (!calculateSum) {
sum = gradOutput.sum()
calculateSum = true
}
gradInput[Tensor[D]](i).resizeAs(input[Tensor[D]](i)).setValue(sum)
}
}
i += 1
}
i = input.length + 1
while (i <= gradInput.length) {
gradInput.remove(i)
}
gradInput
}
override def clearState(): this.type = {
if (!inplace) {
super.clearState()
}
this
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
}
object CAddTable extends ModuleSerializable {
def apply[T: ClassTag](
inplace: Boolean = false)(implicit ev: TensorNumeric[T]) : CAddTable[T, T] = {
new CAddTable[T, T](inplace)
}
override def getTypes(context: DeserializeContext): (Array[ClassTag[_]],
Array[TensorNumeric[_]]) = {
var (tags, numerics) = super.getTypes(context)
val defaultTag = tags(0)
val defaultNumeric = numerics(0)
if (tags.size < 2) {
val extendedTags = Array[ClassTag[_]](defaultTag, defaultTag)
val extendNumerics = Array[TensorNumeric[_]](defaultNumeric, defaultNumeric)
(extendedTags, extendNumerics)
} else {
(tags, numerics)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy