com.intel.analytics.bigdl.nn.ConcatTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.Graph.ModuleNode
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* ConcateTable is a container module like Concate. Applies an input
* to each member module, input can be a tensor or a table.
*
* ConcateTable usually works with CAddTable and CMulTable to
* implement element wise add/multiply on outputs of two modules.
*/
@SerialVersionUID(- 704681653938468956L)
class ConcatTable[T : ClassTag]
(implicit ev: TensorNumeric[T])
extends DynamicContainer[Activity, Table, T] with MklInt8Convertible {
override def updateOutput(input: Activity): Table = {
require(modules.length > 0, "empty modules of concat table")
if (gradInput == null) {
gradInput = allocateAs(input)
}
var i = 0
while (i < modules.length) {
val currentOutput = modules(i).forward(input)
output.toTable(i + 1) = currentOutput
i += 1
}
output
}
/**
* add in to out
*
* @param out a table
* @param in a table
*/
private def addTable(out: Activity, in: Activity) : Unit = {
if (in.isInstanceOf[Tensor[T]] && out.isInstanceOf[Tensor[T]]) {
require(in.toTensor[T].nElement() == out.toTensor[T].nElement(),
"gradInput should have the same size" +
s"The sizes are ${in.toTensor[T].nElement()} " +
s"and ${out.toTensor[T].nElement()}")
out.toTensor[T].add(in.toTensor[T])
} else {
var i = 1
while (i <= out.toTable.length()) {
addTable(out.toTable(i), in.toTable(i))
i += 1
}
}
}
/**
* copy src to out
*
* @param out a table
* @param src a table
*/
private def copyTable(out: Activity, src: Activity) : Unit = {
if (src.isInstanceOf[Tensor[T]] && out.isInstanceOf[Tensor[T]]) {
out.toTensor[T].resizeAs(src.toTensor[T]).copy(src.toTensor[T])
} else {
var i = 1
while (i <= out.toTable.length()) {
copyTable(out.toTable(i), src.toTable(i))
i += 1
}
}
}
/**
* return a clone of src,
* Notice: this is a deep copy, while Table.clone is a shallow copy.
*
* @param src a table
* @return cloned table of src
*/
private def cloneTable(src: Activity) : Activity = {
if (src.isInstanceOf[Tensor[T]]) {
src.toTensor[T].clone()
} else {
val out = T()
var i = 1
while (i <= src.toTable.length()) {
out(i) = cloneTable(src.toTable(i))
i += 1
}
out
}
}
override def updateGradInput(input: Activity, gradOutput: Table): Activity = {
require(modules.length > 0, "empty modules of concat table")
val isInputTable = input.isInstanceOf[Table]
val wasGradInputTable = gradInput.isInstanceOf[Table]
if (isInputTable) {
var i = 0
while (i < modules.length) {
val currentGradInput = modules(i).updateGradInput(input,
gradOutput.toTable(i + 1))
require(currentGradInput.isInstanceOf[Table],
"currentGradInput is not a table!")
if (i == 0) {
if (!wasGradInputTable ||
gradInput.toTable.length() != currentGradInput.toTable.length()) {
// We need deep copy here.
gradInput = cloneTable(currentGradInput)
} else {
copyTable(gradInput, currentGradInput)
}
} else {
addTable(gradInput, currentGradInput)
}
i += 1
}
} else {
var i = 0
while (i < modules.length) {
val currentGradInput = modules(i).updateGradInput(input,
gradOutput.toTable(i + 1)).toTensor[T]
if (i == 0) {
if (wasGradInputTable) {
gradInput = currentGradInput.clone()
} else {
gradInput.toTensor[T].resizeAs(
currentGradInput).copy(currentGradInput)
}
} else {
gradInput.toTensor[T].add(currentGradInput)
}
i += 1
}
}
gradInput
}
override def backward(input: Activity, gradOutput: Table): Activity = {
val before = System.nanoTime()
require(modules.length > 0, "empty modules of concat table")
val isInputTable = input.isInstanceOf[Table]
val wasGradInputTable = gradInput.isInstanceOf[Table]
if (isInputTable) {
var i = 0
while (i < modules.length) {
val currentGradInput = modules(i).backward(input,
gradOutput.toTable(i + 1))
require(currentGradInput.isInstanceOf[Table],
"currentGradInput is not a table!")
if (i == 0) {
if (!wasGradInputTable ||
gradInput.toTable.length() != currentGradInput.toTable.length()) {
// We need deep copy here.
gradInput = cloneTable(currentGradInput)
} else {
copyTable(gradInput, currentGradInput)
}
} else {
addTable(gradInput, currentGradInput)
}
i += 1
}
} else {
var i = 0
while (i < modules.length) {
val currentGradInput = modules(i).backward(input,
gradOutput.toTable(i + 1)).toTensor[T]
if (i == 0) {
if (wasGradInputTable) {
gradInput = currentGradInput.clone()
} else {
gradInput.toTensor[T].resizeAs(
currentGradInput).copy(currentGradInput)
}
} else {
gradInput.toTensor[T].add(currentGradInput)
}
i += 1
}
}
backwardTime += System.nanoTime() - before
gradInput
}
override def accGradParameters(input: Activity, gradOutput: Table): Unit = {
var i = 0
while (i < modules.length) {
modules(i).accGradParameters(input, gradOutput.toTable(i + 1))
i += 1
}
}
override def clearState(): ConcatTable.this.type = {
super.clearState()
modules.foreach(_.clearState())
if (gradInput.isInstanceOf[Table]) {
gradInput.toTable.clear()
}
this
}
override def toString(): String = {
val tab = "\t"
val line = "\n"
val next = " |`-> "
val lastNext = " `-> "
val ext = " | "
val extlast = " "
val last = " ... -> "
var str = s"${getPrintName}"
str = str + " {" + line + tab + "input"
var i = 1
while (i <= modules.length) {
if (i == modules.length) {
str = str + line + tab + lastNext + "(" + i + "): " +
modules(i-1).toString.replace(line, line + tab + extlast)
} else {
str = str + line + tab + next + "(" + i + "): " +
modules(i-1).toString.replace(line, line + tab + ext)
}
i += 1
}
str = str + line + tab + last + "output"
str = str + line + "}"
str
}
override def getEndNodes(startNodes: Array[ModuleNode[T]]): Array[ModuleNode[T]] = {
val outputs = ArrayBuffer[ModuleNode[T]]()
var outputTuple: Array[ModuleNode[T]] = null
for (i <- 0 to modules.size - 1) {
outputTuple = modules(i).getEndNodes(startNodes)
outputs ++= outputTuple
}
outputs.toArray
}
}
object ConcatTable {
def apply[A <: Activity : ClassTag, @specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : ConcatTable[T] = {
new ConcatTable[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy