com.intel.analytics.bigdl.nn.Cosine.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{Initializable, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.RandomGenerator._
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* [[Cosine]] calculates the cosine similarity of the input to k mean centers.
* The input given in `forward(input)` must be either
* a vector (1D tensor) or matrix (2D tensor). If the input is a vector, it must
* have the size of `inputSize`. If it is a matrix, then each row is assumed to be
* an input sample of given batch (the number of rows means the batch size and
* the number of columns should be equal to the `inputSize`).
*
* @param inputSize the size of each input sample
* @param outputSize the size of the module output of each sample
*/
@SerialVersionUID(- 8739169489135761430L)
class Cosine[T: ClassTag](val inputSize : Int, val outputSize : Int)(
implicit ev: TensorNumeric[T]) extends TensorModule[T] with Initializable {
val gradWeight = Tensor[T](outputSize, inputSize)
val weight = Tensor[T](outputSize, inputSize)
@transient
var _weightNorm: Tensor[T] = null
@transient
var _inputNorm: Tensor[T] = null
@transient
var __norm: T = ev.fromType(0)
@transient
var _sum: Tensor[T] = null
@transient
var _weight: Tensor[T] = null
@transient
var _gradOutput: Tensor[T] = null
{
val stdv = 1 / math.sqrt(weight.size(1))
val wInit: InitializationMethod = RandomUniform(-stdv, stdv)
setInitMethod(weightInitMethod = wInit)
}
override def reset(): Unit = {
weightInitMethod.init(weight, VariableFormat.OUT_IN)
zeroGradParameters()
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.dim() == 1 || input.dim() == 2,
s"input.dim() ${input.dim()} Cosine: ${ErrorInfo.constrainInputAsVectorOrBatch}")
if (null == _weightNorm) _weightNorm = Tensor[T]()
if (null == _inputNorm) _inputNorm = Tensor[T]()
if (null == _sum) _sum = Tensor[T]()
if (null == _weight) _weight = Tensor[T]()
if (null == _gradOutput) _gradOutput = Tensor[T]()
weight.norm(_weightNorm, 2, 2)
_weightNorm.add(ev.fromType(1e-12))
if (input.dim() == 1) {
output.resize(outputSize).zero()
output.addmv(ev.fromType(1), weight, input)
__norm = ev.plus(input.norm(2), ev.fromType(1e-12))
output.cdiv(_weightNorm.view(outputSize)).div(__norm)
} else if (input.dim() == 2) {
val batchSize = input.size(1)
val nElement = output.nElement()
output.resize(batchSize, outputSize)
if (output.nElement() != nElement) output.zero()
output.addmm(ev.fromType(0), output, ev.fromType(1), input, weight.t())
input.norm(_inputNorm, 2, 2)
output.cdiv(_weightNorm.view(1, outputSize).expandAs(output))
output.cdiv(Tensor[T](_inputNorm.storage(), _inputNorm.storageOffset(),
_inputNorm.size(), _inputNorm.stride()).expandAs(output))
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]) : Tensor[T] = {
require(input.dim() == 1 || input.dim() == 2,
s"Cosine: ${ErrorInfo.constrainInputAsVectorOrBatch}, input.dim() ${input.dim()}")
val nElement = gradInput.nElement()
gradInput.resizeAs(input)
if (gradInput.nElement() != nElement) gradInput.zero()
if (input.dim() == 1) {
_weight.resizeAs(weight).copy(weight)
_weight.cdiv(Tensor[T](_weightNorm.storage(), _weightNorm.storageOffset(),
_weightNorm.size(), _weightNorm.stride()).expandAs(weight))
_weight.div(__norm)
_weight.addr(ev.fromType(1), _weight, ev.divide(ev.fromType(-1),
ev.times(__norm, __norm)), output, input)
gradInput.addmv(ev.fromType(0), ev.fromType(1), _weight.t(), gradOutput)
} else if (input.dim() == 2) {
val inputNorm = _inputNorm.expandAs(input)
val weightNorm = _weightNorm.view(1, outputSize).expandAs(gradOutput)
gradInput.copy(input).cdiv(inputNorm)
_gradOutput.resizeAs(gradOutput).copy(gradOutput)
_gradOutput.cmul(output)
_sum.sum(_gradOutput, 2)
gradInput.cmul(_sum.expandAs(input))
_gradOutput.resizeAs(gradOutput).copy(gradOutput)
_gradOutput.cdiv(weightNorm)
gradInput.addmm(ev.fromType(-1), gradInput, ev.fromType(1), _gradOutput, weight)
gradInput.cdiv(inputNorm)
}
gradInput
}
override def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit = {
require(input.dim() == 1 || input.dim() == 2,
s"Cosine: ${ErrorInfo.constrainInputAsVectorOrBatch}, input.dim() ${input.dim()}")
if (input.dim() == 1 && scaleW != 0) {
_gradOutput.resizeAs(gradOutput).copy(gradOutput)
var weightNorm = Tensor[T]()
weightNorm = _weightNorm.view(outputSize)
_gradOutput.cdiv(weightNorm)
gradWeight.addr(ev.divide(ev.fromType[Double](scaleW), __norm), _gradOutput, input)
_gradOutput.cdiv(weightNorm)
_gradOutput.cmul(output)
_weight.resizeAs(weight).copy(weight)
_weight.cmul(_gradOutput.view(outputSize, 1).expandAs(weight))
gradWeight.add(ev.fromType[Double](-scaleW), _weight)
} else if (input.dim() == 2) {
_weight.resizeAs(weight).copy(weight)
_gradOutput.resizeAs(gradOutput).copy(gradOutput)
_gradOutput.cmul(output)
_sum.sum(_gradOutput, 1)
val grad = _sum(1)
grad.cdiv(_weightNorm.select(2, 1))
_weight.cmul(grad.view(outputSize, 1).expandAs(_weight))
val input_ = _gradOutput
input_.resizeAs(input).copy(input)
input_.cdiv(_inputNorm.expandAs(input))
_weight.addmm(ev.fromType(-1), _weight, ev.fromType(1), gradOutput.t(), input_)
_weight.cdiv(_weightNorm.expandAs(_weight))
gradWeight.add(_weight)
}
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(Array(this.weight), Array(this.gradWeight))
}
override def toString(): String = {
s"${getPrintName}($inputSize, $outputSize)"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Cosine[T]]
override def equals(other: Any): Boolean = other match {
case that: Cosine[T] =>
super.equals(that) &&
(that canEqual this) &&
weight == that.weight &&
inputSize == that.inputSize &&
outputSize == that.outputSize
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), weight, inputSize, outputSize)
state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
}
}
object Cosine {
def apply[@specialized(Float, Double) T: ClassTag](
inputSize : Int,
outputSize : Int)(implicit ev: TensorNumeric[T]) : Cosine[T] = {
new Cosine[T](inputSize, outputSize)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy