All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.nn.CosineEmbeddingCriterion.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.intel.analytics.bigdl.nn

import com.intel.analytics.bigdl.nn.abstractnn.AbstractCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table

import scala.reflect.ClassTag

/**
 * Creates a criterion that measures the loss given an input x = {x1, x2},
 * a table of two Tensors, and a Tensor label y with values 1 or -1.
 *
 * @param margin a number from -1 to 1, 0 to 0.5 is suggested
 */

@SerialVersionUID(- 4162399625587460549L)
class CosineEmbeddingCriterion[@specialized(Float, Double) T: ClassTag]
 (val margin: Double = 0.0, val sizeAverage: Boolean = true)
 (implicit ev: TensorNumeric[T]) extends AbstractCriterion[Table, Table, T]{
  @transient
  private var buffer: Tensor[T] = null
  @transient
  private var w1: Tensor[T] = null
  @transient
  private var w22: Tensor[T] = null
  @transient
  private var w: Tensor[T] = null
  @transient
  private var w32: Tensor[T] = null
  @transient
  private var _outputs: Tensor[T] = null
  @transient
  private var _idx: Tensor[T] = null

  override def updateOutput(input: Table, target: Table): T = {
    var input1 = input[Tensor[T]](1)
    var input2 = input[Tensor[T]](2)
    val _y = target[Tensor[T]](1)

    if (null == buffer) buffer = Tensor[T]()
    if (null == w1) w1 = Tensor[T]()
    if (null == w22) w22 = Tensor[T]()
    if (null == w) w = Tensor[T]()
    if (null == _outputs) _outputs = Tensor[T]()
    if (null == _idx) _idx = Tensor[T]()
    if (null == w32) w32 = Tensor[T]()

    if (input1.dim() == 1) {
      input1 = input1.view(1, input1.nElement())
      input2 = input2.view(1, input2.nElement())
    }

    buffer.resizeAs(input1).cmul(input1, input2)
    w1.sum(buffer, 2)

    val epsilon = 1e-12
    buffer.cmul(input1, input1)
    w22.sum(buffer, 2).add(ev.fromType(epsilon))
    _outputs.resizeAs(w22).fill(ev.fromType(1))
    w22.cdiv(_outputs, w22)
    w.resizeAs(w22).copy(w22)

    buffer.cmul(input2, input2)
    w32.sum(buffer, 2).add(ev.fromType(epsilon))
    w32.cdiv(_outputs, w32)
    w.cmul(w32)
    w.sqrt()

    _outputs.cmul(w1, w)
    _outputs = _outputs.select(2, 1)

    _idx.resizeAs(_y).eq(_y, ev.fromType(-1))
    if (ev.toType[Double](_idx.sum()) > 0) {
      _outputs.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, _outputs).
        add(ev.fromType(-margin)).cmax(ev.fromType(0)))
    }
    _idx.resizeAs(_y).eq(_y, ev.fromType(1))
    if (ev.toType[Double](_idx.sum()) > 0) {
      _outputs.maskedCopy(_idx, Tensor[T].resizeAs(_idx).maskedSelect(_idx, _outputs))
    }
    output = _outputs.sum()

    if (sizeAverage) {
      output = ev.divide(output, ev.fromType(_y.size(1)))
    }
    output
  }

  override def updateGradInput(input: Table, target: Table): Table = {
    var v1 = input[Tensor[T]](1)
    var v2 = input[Tensor[T]](2)
    val _y = target[Tensor[T]](1)
    var not_batch = false

    if (v1.dim() == 1) {
      v1 = v1.view(1, v1.nElement())
      v2 = v2.view(1, v2.nElement())
      not_batch = true
    }

    if (!gradInput.contains(1)) gradInput.insert(1, Tensor[T])
    if (!gradInput.contains(2)) gradInput.insert(2, Tensor[T])

    val gw1 = gradInput[Tensor[T]](1)
    val gw2 = gradInput[Tensor[T]](2)

    gw1.resizeAs(v1).copy(v2)
    gw2.resizeAs(v1).copy(v1)

    buffer.resizeAs(w1).cmul(w1, w22)
    gw1.addcmul(ev.fromType(-1), buffer.expandAs(v1), v1)
    gw1.cmul(w.expandAs(v1))

    buffer.resizeAs(w1).cmul(w1, w32)
    gw2.addcmul(ev.fromType(-1), buffer.expandAs(v1), v2)
    gw2.cmul(w.expandAs(v1))

    _idx.resizeAs(_y).le(_y, Tensor[T].resizeAs(_y).zero())
    _idx.view(_idx.nElement(), 1)
    _idx.resizeAs(gw1)

    val tmp = Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero()
    gw1.maskedCopy(_idx, tmp)
    gw2.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())

    _idx.resizeAs(_y).eq(_y, ev.fromType(0))
    _idx.view(_idx.nElement(), 1)
    _idx.resizeAs(gw2)

    gw1.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())
    gw2.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())

    if (ev.toType[Double](_idx.sum()) > 0) {
      gw1.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, gw1).mul(ev.fromType(-1)))
    }
    if (ev.toType[Double](_idx.sum()) > 0) {
      gw2.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, gw2).mul(ev.fromType(-1)))
    }

    if (sizeAverage) {
      gw1.div(ev.fromType(_y.size(1)))
      gw2.div(ev.fromType(_y.size(1)))
    }

    if (not_batch) {
      gradInput[Tensor[T]](1).resize(gw1.size(2))
      gradInput[Tensor[T]](2).resize(gw2.size(2))
    }

    gradInput
  }

  override def canEqual(other: Any): Boolean = other.isInstanceOf[CosineEmbeddingCriterion[T]]

  override def equals(other: Any): Boolean = other match {
    case that: CosineEmbeddingCriterion[T] =>
      (that canEqual this) &&
        margin == that.margin &&
        sizeAverage == that.sizeAverage
    case _ => false
  }

  override def hashCode(): Int = {
    def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
    val state = Seq(margin, sizeAverage)
    state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
  }

  override def toString(): String = {
    s"nn.CosineEmbeddingCriterion($margin, $sizeAverage)"
  }
}

object CosineEmbeddingCriterion {
  def apply[@specialized(Float, Double) T: ClassTag](
      margin: Double = 0.0,
      sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : CosineEmbeddingCriterion[T] = {
    new CosineEmbeddingCriterion[T](margin, sizeAverage)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy