com.intel.analytics.bigdl.nn.CosineEmbeddingCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Creates a criterion that measures the loss given an input x = {x1, x2},
* a table of two Tensors, and a Tensor label y with values 1 or -1.
*
* @param margin a number from -1 to 1, 0 to 0.5 is suggested
*/
@SerialVersionUID(- 4162399625587460549L)
class CosineEmbeddingCriterion[@specialized(Float, Double) T: ClassTag]
(val margin: Double = 0.0, val sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]) extends AbstractCriterion[Table, Table, T]{
@transient
private var buffer: Tensor[T] = null
@transient
private var w1: Tensor[T] = null
@transient
private var w22: Tensor[T] = null
@transient
private var w: Tensor[T] = null
@transient
private var w32: Tensor[T] = null
@transient
private var _outputs: Tensor[T] = null
@transient
private var _idx: Tensor[T] = null
override def updateOutput(input: Table, target: Table): T = {
var input1 = input[Tensor[T]](1)
var input2 = input[Tensor[T]](2)
val _y = target[Tensor[T]](1)
if (null == buffer) buffer = Tensor[T]()
if (null == w1) w1 = Tensor[T]()
if (null == w22) w22 = Tensor[T]()
if (null == w) w = Tensor[T]()
if (null == _outputs) _outputs = Tensor[T]()
if (null == _idx) _idx = Tensor[T]()
if (null == w32) w32 = Tensor[T]()
if (input1.dim() == 1) {
input1 = input1.view(1, input1.nElement())
input2 = input2.view(1, input2.nElement())
}
buffer.resizeAs(input1).cmul(input1, input2)
w1.sum(buffer, 2)
val epsilon = 1e-12
buffer.cmul(input1, input1)
w22.sum(buffer, 2).add(ev.fromType(epsilon))
_outputs.resizeAs(w22).fill(ev.fromType(1))
w22.cdiv(_outputs, w22)
w.resizeAs(w22).copy(w22)
buffer.cmul(input2, input2)
w32.sum(buffer, 2).add(ev.fromType(epsilon))
w32.cdiv(_outputs, w32)
w.cmul(w32)
w.sqrt()
_outputs.cmul(w1, w)
_outputs = _outputs.select(2, 1)
_idx.resizeAs(_y).eq(_y, ev.fromType(-1))
if (ev.toType[Double](_idx.sum()) > 0) {
_outputs.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, _outputs).
add(ev.fromType(-margin)).cmax(ev.fromType(0)))
}
_idx.resizeAs(_y).eq(_y, ev.fromType(1))
if (ev.toType[Double](_idx.sum()) > 0) {
_outputs.maskedCopy(_idx, Tensor[T].resizeAs(_idx).maskedSelect(_idx, _outputs))
}
output = _outputs.sum()
if (sizeAverage) {
output = ev.divide(output, ev.fromType(_y.size(1)))
}
output
}
override def updateGradInput(input: Table, target: Table): Table = {
var v1 = input[Tensor[T]](1)
var v2 = input[Tensor[T]](2)
val _y = target[Tensor[T]](1)
var not_batch = false
if (v1.dim() == 1) {
v1 = v1.view(1, v1.nElement())
v2 = v2.view(1, v2.nElement())
not_batch = true
}
if (!gradInput.contains(1)) gradInput.insert(1, Tensor[T])
if (!gradInput.contains(2)) gradInput.insert(2, Tensor[T])
val gw1 = gradInput[Tensor[T]](1)
val gw2 = gradInput[Tensor[T]](2)
gw1.resizeAs(v1).copy(v2)
gw2.resizeAs(v1).copy(v1)
buffer.resizeAs(w1).cmul(w1, w22)
gw1.addcmul(ev.fromType(-1), buffer.expandAs(v1), v1)
gw1.cmul(w.expandAs(v1))
buffer.resizeAs(w1).cmul(w1, w32)
gw2.addcmul(ev.fromType(-1), buffer.expandAs(v1), v2)
gw2.cmul(w.expandAs(v1))
_idx.resizeAs(_y).le(_y, Tensor[T].resizeAs(_y).zero())
_idx.view(_idx.nElement(), 1)
_idx.resizeAs(gw1)
val tmp = Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero()
gw1.maskedCopy(_idx, tmp)
gw2.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())
_idx.resizeAs(_y).eq(_y, ev.fromType(0))
_idx.view(_idx.nElement(), 1)
_idx.resizeAs(gw2)
gw1.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())
gw2.maskedCopy(_idx, Tensor[T](ev.toType[Double](_idx.sum()).toInt).zero())
if (ev.toType[Double](_idx.sum()) > 0) {
gw1.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, gw1).mul(ev.fromType(-1)))
}
if (ev.toType[Double](_idx.sum()) > 0) {
gw2.maskedCopy(_idx, Tensor[T].maskedSelect(_idx, gw2).mul(ev.fromType(-1)))
}
if (sizeAverage) {
gw1.div(ev.fromType(_y.size(1)))
gw2.div(ev.fromType(_y.size(1)))
}
if (not_batch) {
gradInput[Tensor[T]](1).resize(gw1.size(2))
gradInput[Tensor[T]](2).resize(gw2.size(2))
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[CosineEmbeddingCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: CosineEmbeddingCriterion[T] =>
(that canEqual this) &&
margin == that.margin &&
sizeAverage == that.sizeAverage
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(margin, sizeAverage)
state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
}
override def toString(): String = {
s"nn.CosineEmbeddingCriterion($margin, $sizeAverage)"
}
}
object CosineEmbeddingCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
margin: Double = 0.0,
sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : CosineEmbeddingCriterion[T] = {
new CosineEmbeddingCriterion[T](margin, sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy