com.intel.analytics.bigdl.nn.DotProduct.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* This is a simple table layer which takes a table of two tensors as input
* and calculate the dot product between them as outputs
*/
@SerialVersionUID(2455897411271580599L)
class DotProduct[T: ClassTag] (implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Tensor[T], T] {
gradInput = T(Tensor[T](), Tensor[T]())
@transient private var buffer: Tensor[T] = null
override def updateOutput(input: Table): Tensor[T] = {
var input1: Tensor[T] = input(1)
var input2: Tensor[T] = input(2)
if (input1.dim() == 1) {
input1 = input1.view(1, input1.size(1))
input2 = input2.view(1, input2.size(1))
}
if (buffer == null) {
buffer = Tensor[T]()
}
buffer.resizeAs(input1).cmul(input1, input2)
output.sum(buffer, 2)
output.resize(input1.size(1))
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
var input1: Tensor[T] = input(1)
var input2: Tensor[T] = input(2)
var notBatch = false
if (gradInput.length() != 2) {
if (!gradInput.contains(1)) {
gradInput.update(1, Tensor[T]())
}
if (!gradInput.contains(2)) {
gradInput.update(2, Tensor[T]())
}
}
if (input1.dim() == 1) {
input1 = input1.view(1, input1.size(1))
input2 = input2.view(1, input2.size(1))
notBatch = true
}
val gw1: Tensor[T] = gradInput(1)
val gw2: Tensor[T] = gradInput(2)
gw1.resizeAs(input1).copy(input2)
gw2.resizeAs(input2).copy(input1)
val go = gradOutput.view(gradOutput.size(1), 1).expandAs(input1)
gw1.cmul(go)
gw2.cmul(go)
if (notBatch) {
gradInput[Tensor[T]](1).set(gw1.select(1, 1))
gradInput[Tensor[T]](2).set(gw2.select(1, 1))
}
gradInput
}
override def toString: String = {
s"nn.DotProduct"
}
}
object DotProduct {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : DotProduct[T] = {
new DotProduct[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy