com.intel.analytics.bigdl.nn.Echo.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.serializer.{DeserializeContext, ModuleData, ModuleSerializable, SerializeContext}
import com.intel.analytics.bigdl.serialization.Bigdl.BigDLModule
import scala.reflect.ClassTag
/**
* This module is for debug purpose, which can print activation and gradient in your model
* topology
*
* User can pass in a customized function to inspect more information from the activation. This is
* very useful in Debug.
*
* Please note that the passed in customized function will not be persisted in serialization.
*/
@SerialVersionUID(6735245897546687343L)
class Echo[T: ClassTag](
private var feval: (Echo[T], Tensor[T]) => Unit,
private var beval: (Echo[T], Tensor[T], Tensor[T]) => Unit
) (implicit ev: TensorNumeric[T])
extends TensorModule[T] {
/**
* Set evaluation method for forward
* @param feval
* @return
*/
def setFeval(feval: (Echo[T], Tensor[T]) => Unit): this.type = {
this.feval = feval
this
}
/**
* Set evaluation method for backward
* @param beval
* @return
*/
def setBeval(beval: (Echo[T], Tensor[T], Tensor[T]) => Unit): this.type = {
this.beval = beval
this
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
this.output = input
feval(this, input)
this.output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
this.gradInput = gradOutput
beval(this, input, gradOutput)
this.gradInput
}
}
object Echo extends ModuleSerializable {
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]) : Echo[T] = {
new Echo[T](Echo.defaultFeval[T]_, Echo.defaultBeval[T]_)
}
def apply[T: ClassTag](feval: (Echo[T], Tensor[T]) => Unit)
(implicit ev: TensorNumeric[T]) : Echo[T] = {
new Echo[T](feval, Echo.defaultBeval[T]_)
}
def apply[T: ClassTag](feval: (Echo[T], Tensor[T]) => Unit,
beval: (Echo[T], Tensor[T], Tensor[T]) => Unit)
(implicit ev: TensorNumeric[T]) : Echo[T] = {
new Echo[T](feval, beval)
}
private def defaultFeval[T](module: Echo[T], input: Tensor[T]): Unit = {
println(s"${module.getPrintName} : Activation size is ${input.size().mkString("x")}")
}
private def defaultBeval[T](module: Echo[T], input: Tensor[T], gradOutput: Tensor[T]): Unit = {
println(s"${module.getPrintName} : Gradient size is ${gradOutput.size().mkString("x")}")
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
b: BigDLModule.Builder)
(implicit ev: TensorNumeric[T]): Unit = {
// We won't serialize the function, so do nothing here
}
override def doLoadModule[T: ClassTag](context: DeserializeContext)
(implicit ev: TensorNumeric[T]): AbstractModule[Activity, Activity, T] = {
new Echo[T](defaultFeval, defaultBeval)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy