com.intel.analytics.bigdl.nn.ExpandSize.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* Expand tensor to configured size
* @param targetSizes target tensor sizes, dim whose size is -1 will be ignored
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class ExpandSize[T: ClassTag](targetSizes: Array[Int])
(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[T], Tensor[T], T] {
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(targetSizes.length == input.dim(),
s"the number of dimensions provided must equal ${input.dim()}")
val tensorDim = input.dim()
val tensorStride = input.stride()
val tensorSize = input.size()
var i = 0
while (i < tensorDim) {
if (targetSizes(i) != -1) {
if (tensorSize(i) == 1) {
tensorSize(i) = targetSizes(i)
tensorStride(i) = 0
} else if (tensorSize(i) != targetSizes(i)) {
throw new UnsupportedOperationException(
"incorrect size: only supporting singleton expansion (size=1)")
}
}
i += 1
}
output.set(input.storage(), input.storageOffset(), tensorSize, tensorStride)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val tensorDim = input.dim()
val tensorSize = input.size()
gradInput = Tensor[T](tensorSize)
val expandDim = new ArrayBuffer[Int]()
var i = 0
while (i < tensorDim) {
if (targetSizes(i) != -1) {
if (tensorSize(i) == 1 && targetSizes(i) != 1) {
expandDim.append(i + 1)
}
}
i += 1
}
i = expandDim.size - 1
val sizes = gradOutput.size()
var _gradOutput = gradOutput
while (i >= 0) {
var start = 1
sizes(expandDim(i) - 1) = 1
val _gradInput = Tensor[T](sizes)
while (start <= gradOutput.size(expandDim(i))) {
val x = _gradOutput.narrow(expandDim(i), start, 1)
_gradInput.add(x)
start += 1
}
_gradOutput = _gradInput
i -= 1
}
gradInput = _gradOutput
gradInput
}
override def toString: String = s"ExpandSize"
}
object ExpandSize {
def apply[@specialized(Float, Double) T: ClassTag](targetSizes: Array[Int])
(implicit ev: TensorNumeric[T]) : ExpandSize[T] = {
new ExpandSize[T](targetSizes)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy