com.intel.analytics.bigdl.nn.GaussianDropout.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Apply multiplicative 1-centered Gaussian noise.
* The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate)).
*
* As it is a regularization layer, it is only active at training time.
*
* Output shape is the same as input.
*
*
* @param rate double, drop probability (as with `Dropout`).
*
*/
@SerialVersionUID(- 1575781981601306833L)
class GaussianDropout[T: ClassTag](
val rate: Double
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
require(rate < 1 && rate >= 0, s"rate should be in range [0,1)")
val stddev: Double = Math.sqrt(rate / (1.0-rate))
override def updateOutput(input: Tensor[T]): Tensor[T] = {
this.output.resizeAs(input).copy(input)
if(train) {
// generate a new random noise tensor in each forward and backward
// following the behavior of tensorflow
val noise = Tensor[T]()
noise.resizeAs(input)
noise.randn(1.0, stddev)
this.output.cmul(noise)
} else {
this.output
}
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
this.gradInput.resizeAs(gradOutput).copy(gradOutput)
if (train) {
val noise = Tensor[T]()
noise.resizeAs(gradOutput)
noise.randn(1.0, stddev)
this.gradInput.cmul(noise)
} else {
throw new IllegalArgumentException("backprop only defined while training")
}
this.gradInput
}
override def toString(): String = {
s"${getPrintName}($rate)"
}
}
object GaussianDropout {
def apply[@specialized(Float, Double) T: ClassTag](
rate: Double
)(implicit ev: TensorNumeric[T]) : GaussianDropout[T] = {
new GaussianDropout[T](rate)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy