com.intel.analytics.bigdl.nn.GaussianSampler.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Takes {mean, log_variance} as input and samples from the Gaussian distribution
*/
class GaussianSampler[T: ClassTag](
implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Tensor[T], T] {
val eps = Tensor[T]()
override def updateOutput(input: Table): Tensor[T] = {
eps.resizeAs(input(1)).randn()
val output2 = output.toTensor
output2.resizeAs(input(2)).copy(input(2))
output2.mul(ev.fromType(0.5)).exp().cmul(eps)
output2.add(input[Tensor[T]](1))
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
if (!gradInput.contains(1)) gradInput(1) = Tensor()
if (!gradInput.contains(2)) gradInput(2) = Tensor()
gradInput[Tensor[T]](1).resizeAs(gradOutput).copy(gradOutput)
gradInput[Tensor[T]](2).resizeAs(gradOutput).copy(input(2))
gradInput[Tensor[T]](2).mul(ev.fromType(0.5)).exp().mul(ev.fromType(0.5)).cmul(eps)
gradInput[Tensor[T]](2).cmul(gradOutput)
gradInput
}
override def clearState() : this.type = {
super.clearState()
eps.set()
this
}
}
object GaussianSampler {
def apply[@specialized(Float, Double) T: ClassTag]()(
implicit ev: TensorNumeric[T]) : GaussianSampler[T] = {
new GaussianSampler[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy