com.intel.analytics.bigdl.nn.GradientReversal.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* It is a simple module preserves the input, but takes the
* gradient from the subsequent layer, multiplies it by -lambda
* and passes it to the preceding layer. This can be used to maximise
* an objective function whilst using gradient descent, as described in
* ["Domain-Adversarial Training of Neural Networks"
* (http://arxiv.org/abs/1505.07818)]
*
* @param lambda hyper-parameter lambda can be set dynamically during training
*/
@SerialVersionUID(- 5518750357832311906L)
class GradientReversal[T: ClassTag](var lambda: Double = 1) (implicit ev: TensorNumeric[T])
extends TensorModule[T] {
def setLambda(lambda: Double): this.type = {
this.lambda = lambda
this
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.set(input)
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(gradOutput)
.copy(gradOutput)
.mul(ev.negative(ev.fromType[Double](lambda)))
}
}
object GradientReversal {
def apply[@specialized(Float, Double) T: ClassTag](
lambda: Double = 1)(implicit ev: TensorNumeric[T]) : GradientReversal[T] = {
new GradientReversal[T](lambda)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy