com.intel.analytics.bigdl.nn.HardTanh.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, TensorModule}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.Engine
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* Applies HardTanh to each element of input, HardTanh is defined:
* ⎧ maxValue, if x > maxValue
* f(x) = ⎨ minValue, if x < minValue
* ⎩ x, otherwise
*
* @param minValue minValue in f(x), default is -1.
* @param maxValue maxValue in f(x), default is 1.
* @param inplace inplace model.
*/
@SerialVersionUID(- 8953866090802444183L)
class HardTanh[T: ClassTag](
val minValue: Double = -1,
val maxValue: Double = 1,
val inplace: Boolean = false
)(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
require(maxValue > minValue, "maxValue must be larger than minValue, " +
s"maxValue ${maxValue}, " +
s"minValue ${minValue}")
val min = ev.fromType[Double](minValue)
val max = ev.fromType[Double](maxValue)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
if (inplace) {
output.set(input)
}
else {
output.resizeAs(input)
}
if (input.dim() == 1 || !input.isContiguous() || !output.isContiguous()) {
if (inplace) {
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
if (ev.isGreater(min, data(index))) {
data(index) = ev.fromType[Double](minValue)
} else if (ev.isGreater(data(index), max)) {
data(index) = ev.fromType[Double](maxValue)
}
}
}
DenseTensorApply.apply1[T](input, func)
} else {
val func2 = new TensorFunc4[T] {
override def apply(data1: Array[T], index1: Int, data2: Array[T], index2: Int): Unit = {
if (ev.isGreater(min, data2(index2))) {
data1(index1) = min
} else if (ev.isGreaterEq(max, data2(index2))) {
data1(index1) = data2(index2)
} else {
data1(index1) = max
}
}
}
DenseTensorApply.apply2[T](output, input, func2)
}
} else {
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val outputData = output.storage().array()
val outputOffset = input.storageOffset() - 1
var i = 0
if (inplace) {
while (i < input.nElement()) {
if (ev.isGreater(min, inputData(i + inputOffset))) {
inputData.update(i + inputOffset, min)
} else if (ev.isGreater(inputData(i + inputOffset), max)) {
inputData.update(i + inputOffset, max)
}
i += 1
}
} else {
while (i < input.nElement()) {
if (ev.isGreater(min, inputData(i + inputOffset))) {
outputData.update(i + outputOffset, min)
} else if (ev.isGreaterEq(max, inputData(i + inputOffset))) {
outputData.update(i + outputOffset, inputData(i + inputOffset))
} else {
outputData.update(i + outputOffset, max)
}
i += 1
}
}
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.nElement() == gradOutput.nElement(),
s"the number of input element (${input.nElement()}) " +
s"should equal the number of " +
s"gradOutput element (${gradOutput.nElement()}), ")
if (inplace) {
gradInput.set(gradOutput)
} else {
gradInput.resizeAs(input)
}
if (input.dim() == 1 || !input.isContiguous() || !gradOutput.isContiguous()
|| !gradInput.isContiguous()) {
if (inplace) {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], index1: Int, data2: Array[T], index2: Int): Unit = {
if (ev.isGreaterEq(min, data2(index2)) || ev.isGreaterEq(data2(index2), max)) {
data1(index1) = ev.fromType[Double](0)
}
}
}
DenseTensorApply.apply2[T](gradOutput, input, func)
} else {
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T],
offset2: Int, data3: Array[T], offset3: Int): Unit = {
if (ev.isGreaterEq(min, data3(offset3)) || ev.isGreaterEq(data3(offset3), max)) {
data1(offset1) = ev.fromType[Double](0)
} else {
data1(offset1) = data2(offset2)
}
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, input, func)
}
} else {
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val gradOutputData = gradOutput.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
val gradInputData = gradInput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
var i = 0
if (inplace) {
while (i < input.nElement()) {
if (ev.isGreaterEq(min, inputData(i + inputOffset))
|| ev.isGreaterEq(inputData(i + inputOffset), max)) {
gradInputData.update(i + gradInputOffset, ev.fromType[Double](0))
}
i += 1
}
} else {
while (i < input.nElement()) {
if (ev.isGreaterEq(min, inputData(i + inputOffset))
|| ev.isGreaterEq(inputData(i + inputOffset), max)) {
gradInputData.update(i + gradInputOffset, ev.fromType[Double](0))
} else {
gradInputData.update(i + gradInputOffset, gradOutputData(i + gradOutputOffset))
}
i += 1
}
}
}
gradInput
}
override def toString: String = {
s"nn.HardTanh"
}
override def clearState(): this.type = {
if (!inplace) {
super.clearState()
}
this
}
}
object HardTanh {
def apply[@specialized(Float, Double) T: ClassTag](
minValue: Double = -1,
maxValue: Double = 1,
inplace: Boolean = false)
(implicit ev: TensorNumeric[T]): HardTanh[T] = {
new HardTanh[T](minValue, maxValue, inplace)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy