com.intel.analytics.bigdl.nn.JoinTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.google.protobuf.ByteString
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.bigdl.utils.tf.TFTensorNumeric.NumericByteString
import com.intel.analytics.bigdl.utils.{Engine, Table}
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* It is a table module which takes a table of Tensors as input and
* outputs a Tensor by joining them together along the dimension `dimension`.
*
* The input to this layer is expected to be a tensor, or a batch of tensors;
* when using mini-batch, a batch of sample tensors will be passed to the layer and
* the user need to specify the number of dimensions of each sample tensor in the
* batch using `nInputDims`.
*
* @param dimension to be join in this dimension
* @param nInputDims specify the number of dimensions that this module will receive
* If it is more than the dimension of input tensors, the first dimension
* would be considered as batch size
*/
@SerialVersionUID(- 8435694717504118735L)
class JoinTable[T: ClassTag] (
val dimension: Int,
val nInputDims: Int
)(implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Tensor[_], T] {
@transient
private var results: Array[Future[Unit]] = null
private def getPositiveDimension(input: Table): Int = {
var nDim = this.dimension
val firstInput: Tensor[_] = input(1)
if (nDim < 0) {
nDim = firstInput.dim() + nDim + 1
} else if (nInputDims > 0 && firstInput.dim() == (nInputDims + 1)) {
nDim += 1
}
require(firstInput.dim() >= dimension, "dimension exceeds input dimensions" +
s" input dimension ${firstInput.dim()}, dimension ${dimension}")
nDim
}
override def updateOutput(input: Table): Tensor[_] = {
val dimension = getPositiveDimension(input)
var size: Array[Int] = null
var i = 1
while (i <= input.length()) {
val currentOutput: Tensor[_] = input(i)
if (i == 1) {
size = currentOutput.size()
} else {
size(dimension - 1) += currentOutput.size(dimension)
}
i += 1
}
val firstInput = input[Tensor[_]](1)
if (output.getType() != firstInput.getType()) {
output = firstInput.emptyInstance().resize(size)
} else {
output.resize(size)
}
if (results == null || results.length != input.length) {
results = new Array[Future[Unit]](input.length)
}
var offset = 1
i = 0
while (i < input.length) {
val currentOutput = input(i + 1).asInstanceOf[Tensor[NumericWildcard]]
val _offset = offset
results(i) = Engine.model.invoke( () => {
val target = output.narrow(dimension, _offset, currentOutput.size(dimension))
.asInstanceOf[Tensor[NumericWildcard]]
if (target.isContiguous() || dimension > 2) {
target.copy(currentOutput)
} else {
var f = 1
while (f <= target.size(1)) {
val curFrame = target.select(1, f)
val outputFrame = currentOutput.select(1, f)
require(curFrame.isContiguous())
require(outputFrame.isContiguous())
curFrame.copy(outputFrame)
f += 1
}
}
})
i += 1
offset += currentOutput.size(dimension)
}
Engine.model.sync(results)
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[_]): Table = {
val dimension = getPositiveDimension(input)
var offset = 1
var i = 0
while (i < input.length) {
val currentOutput = input(i + 1).asInstanceOf[Tensor[_]]
val _offset = offset
val _i = i
results(i) = Engine.model.invoke( () => {
val narrowedTensor = gradOutput.narrow(dimension, _offset, currentOutput.size(dimension))
.asInstanceOf[Tensor[NumericWildcard]]
val inputTensor = input[Tensor[_]](_i + 1)
if (!gradInput.contains(_i + 1)) {
gradInput(_i + 1) =
inputTensor.emptyInstance().resizeAs(inputTensor)
} else {
gradInput[Tensor[T]](_i + 1).resizeAs(inputTensor)
}
if(narrowedTensor.isContiguous() || dimension > 2) {
gradInput[Tensor[NumericWildcard]](_i + 1).copy(narrowedTensor)
} else {
var b = 1
while(b <= narrowedTensor.size(1)) {
val curFrame = gradInput[Tensor[_]](_i + 1).select(1, b)
.asInstanceOf[Tensor[NumericWildcard]]
val narrowFrame = narrowedTensor.select(1, b)
require(curFrame.isContiguous())
require(narrowFrame.isContiguous())
curFrame.copy(narrowFrame)
b += 1
}
}
})
i += 1
offset += currentOutput.size(dimension)
}
Engine.model.sync(results)
gradInput
}
override def toString: String = s"nn.JoinTable"
override def canEqual(other: Any): Boolean = other.isInstanceOf[JoinTable[T]]
override def equals(other: Any): Boolean = other match {
case that: JoinTable[T] =>
super.equals(that) &&
(that canEqual this) &&
dimension == that.dimension &&
nInputDims == that.nInputDims
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), dimension, nInputDims)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
override def clearState(): this.type = {
super.clearState()
gradInput.clear()
this
}
}
object JoinTable {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int,
nInputDims: Int)(implicit ev: TensorNumeric[T]) : JoinTable[T] = {
new JoinTable[T](dimension, nInputDims)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy