com.intel.analytics.bigdl.nn.LogSigmoid.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, Tensor, TensorFunc6}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* This class is a transform layer corresponding to the sigmoid function:
* f(x) = Log(1 / (1 + e ^^ (-x)))
*/
@SerialVersionUID(884823114984663135L)
class LogSigmoid[T: ClassTag] (implicit ev: TensorNumeric[T])
extends TensorModule[T] {
@transient private var buffer: Tensor[T] = null
override def updateOutput(input: Tensor[T]): Tensor[T] = {
if (buffer == null) {
buffer = Tensor[T]()
}
output.resizeAs(input)
buffer.resizeAs(input)
// TODO: Replace apply to get a better performance
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
val z = ev.exp(ev.negative(data2(offset2)))
data3(offset3) = z
data1(offset1) = ev.negative(ev.log1p(z))
}
}
DenseTensorApply.apply3[T](output, input, buffer, func)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(gradOutput), "input and gradOutput should have the same size" +
s"input size ${input.dim()}, gradOutput size ${input.dim()}")
gradInput
.resizeAs(buffer)
// TODO: Replace apply to get a better performance
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
val z = data3(offset3)
data1(offset1) = ev.divide(
ev.times(data2(offset2), z), ev.plus(ev.fromType[Int](1), z))
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, buffer, func)
gradInput
}
}
object LogSigmoid {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : LogSigmoid[T] = {
new LogSigmoid[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy