com.intel.analytics.bigdl.nn.MM.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Module to perform matrix multiplication on two mini-batch inputs,
* producing a mini-batch.
*
* @param transA specifying whether or not transpose the first input matrix
* @param transB specifying whether or not transpose the second input matrix
*/
@SerialVersionUID(8315388141765786231L)
class MM[T: ClassTag](
val transA: Boolean = false,
val transB: Boolean = false)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Tensor[T], T] {
gradInput = T(Tensor[T], Tensor[T]())
private def checkInputFormat(input: Table): (Tensor[T], Tensor[T]) = {
require(input.length() == 2 && input(1).isInstanceOf[Tensor[T]] &&
input(2).isInstanceOf[Tensor[T]], "Input must be two tensors")
val m1: Tensor[T] = input(1)
val m2: Tensor[T] = input(2)
require(m1.dim() == 2 || m1.dim() == 3 || m1.dim() == 4, "input matrix must be 2D or 3D or 4D" +
s"input dim ${m1.dim()}")
require(m2.dim() == 2 || m2.dim() == 3 || m2.dim() == 4, "input matrix must be 2D or 3D or 4D" +
s"input dim ${m2.dim()}")
(m1, m2)
}
override def updateOutput(input: Table): Tensor[T] = {
var (ma, mb) = checkInputFormat(input)
if (ma.dim() == 2) {
require(mb.dim() == 2, "second input tensor must be 2D" +
s"second input dim ${mb.dim()}")
if (transA) {
ma = ma.t()
}
if (transB) {
mb = mb.t()
}
require(ma.size(2) == mb.size(1), "matrix sizes do not match" +
s"The sizes are ${ma.size(2)} and ${mb.size(1)}")
output.resize(ma.size(1), mb.size(2))
output.mm(ma, mb)
} else {
require(ma.dim() == mb.dim(), s"input tensors should be with same dimension," +
s"but get ${ma.dim()} ${mb.dim()}")
require(mb.dim() == 3 || mb.dim() == 4, "input tensor must be 3D or 4D, but get " +
s"input dim ${mb.dim()}")
val dimNum = ma.dim()
val batchSizeX = ma.size().slice(0, dimNum - 2).product
val batchSizeY = mb.size().slice(0, dimNum - 2).product
require(batchSizeX == batchSizeY, "inputs must contain the same number of minibatches" +
s"The minibatches of each are ${batchSizeX} and ${batchSizeY}")
var reshapedX = ma.view(Array(batchSizeX, ma.size(dimNum - 1), ma.size(dimNum)))
var reshapedY = mb.view(Array(batchSizeX, mb.size(dimNum - 1), mb.size(dimNum)))
if (transA) {
reshapedX = reshapedX.transpose(2, 3)
}
if (transB) {
reshapedY = reshapedY.transpose(2, 3)
}
require(reshapedX.size(3) == reshapedY.size(2), "matrix sizes do not match" +
s"the matrix sizes are ${reshapedX.size(3)} and ${reshapedY.size(2)}")
output.resize(batchSizeX, reshapedX.size(2), reshapedY.size(3)).zero()
output.bmm(reshapedX, reshapedY)
val outputSize = ma.size().slice(0, dimNum - 2) ++ Array(reshapedX.size(2), reshapedY.size(3))
output.resize(outputSize)
}
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
val (ma, mb) = checkInputFormat(input)
require(gradOutput.dim() == 2 || gradOutput.dim() == 3 || gradOutput.dim() == 4,
"arguments must be a 2D or 3D or 4D Tensor" +
s"arguments dim ${gradOutput.dim()}")
val (hDim, wDim, f): (Int, Int, Tensor[T] => Tensor[T] => Tensor[T] => Tensor[T]) =
if (gradOutput.dim() == 2) {
require(ma.dim() == 2, "first input tensor must be 2D" +
s"first input dim ${ma.dim()}")
require(mb.dim() == 2, "second input tensor must be 2D" +
s"second input dim ${mb.dim()}")
(1, 2, t => m1 => m2 => t.mm(m1, m2))
} else if (gradOutput.dim() == 3) {
require(ma.dim() == 3, "first input tensor must be 3D" +
s"first input dim ${ma.dim()}")
require(mb.dim() == 3, "second input tensor must be 3D" +
s"second input dim ${mb.dim()}")
(2, 3, t => m1 => m2 => t.baddbmm(ev.fromType[Float](0.0f), ev.fromType[Float](1.0f),
m1, m2))
} else {
require(ma.dim() == 4, "first input tensor must be 4D" +
s"first input dim ${ma.dim()}")
require(mb.dim() == 4, "second input tensor must be 4D" +
s"second input dim ${mb.dim()}")
(2, 3, t => m1 => m2 => t.bmm(m1, m2))
}
val dimNum = ma.dim()
val batchSize = mb.size().slice(0, dimNum - 2).product
val batchSizeGrad = gradOutput.size().slice(0, dimNum - 2).product
var reshapedX = if (ma.dim() == 4) {
ma.view(Array(batchSize, ma.size(dimNum - 1), ma.size(dimNum)))
} else ma
var reshapedY = if (mb.dim() == 4) {
mb.view(Array(batchSize, mb.size(dimNum - 1), mb.size(dimNum)))
} else mb
val reshapeGradOutput = if (gradOutput.dim() == 4) {
gradOutput.contiguous().view(batchSizeGrad,
gradOutput.size(dimNum - 1), gradOutput.size(dimNum))
} else gradOutput.contiguous()
gradInput[Tensor[T]](1).resizeAs(reshapedX).zero()
gradInput[Tensor[T]](2).resizeAs(reshapedY).zero()
if (transA == transB) {
reshapedX = reshapedX.transpose(hDim, wDim)
reshapedY = reshapedY.transpose(hDim, wDim)
}
if (transA) {
f (gradInput[Tensor[T]](1)) (reshapedY) (reshapeGradOutput.clone().transpose(hDim, wDim))
} else {
f (gradInput[Tensor[T]](1)) (reshapeGradOutput) (reshapedY)
}
if (transB) {
f (gradInput[Tensor[T]](2)) (reshapeGradOutput.clone().transpose(hDim, wDim)) (reshapedX)
} else {
f (gradInput[Tensor[T]](2)) (reshapedX) (reshapeGradOutput)
}
gradInput[Tensor[T]](1).resizeAs(ma)
gradInput[Tensor[T]](2).resizeAs(mb)
gradInput
}
override def toString: String = s"MM()"
override def canEqual(other: Any): Boolean = other.isInstanceOf[MM[T]]
override def equals(other: Any): Boolean = other match {
case that: MM[T] =>
super.equals(that) &&
(that canEqual this) &&
transA == that.transA &&
transB == that.transB
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), transA, transB)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def clearState(): MM.this.type = {
super.clearState()
gradInput[Tensor[T]](1).set()
gradInput[Tensor[T]](2).set()
this
}
}
object MM {
def apply[@specialized(Float, Double) T: ClassTag](
transA: Boolean = false,
transB: Boolean = false)(implicit ev: TensorNumeric[T]) : MM[T] = {
new MM[T](transA, transB)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy