com.intel.analytics.bigdl.nn.Min.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Applies a min operation over dimension `dim`.
*
* @param dim min along this dimension
* @param numInputDims Optional. If in a batch model, set to the inputDims.
*/
@SerialVersionUID(8958076163182151950L)
class Min[T: ClassTag](
var dim : Int = 1,
var numInputDims: Int = Int.MinValue
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
private val values: Tensor[T] = Tensor[T]()
private val indices: Tensor[T] = Tensor[T]()
def setNumInputDims(numInputDims: Int): Unit = {
this.numInputDims = numInputDims
}
private def getPositiveDimension(input: Tensor[T]): Int = {
if (dim < 0) {
input.dim() + dim + 1
} else if (numInputDims != Int.MinValue && input.dim() == numInputDims + 1) {
dim + 1
} else {
dim
}
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val dimension = getPositiveDimension(input)
input.min(values, indices, dimension)
if (input.dim() > 1) {
output.set(values.select(dimension, 1))
} else {
output.set(values)
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val dimension = getPositiveDimension(input)
val gradOutputView = if (input.dim() > 1) {
Tensor[T]().addSingletonDimension(gradOutput, dimension)
} else {
gradOutput
}
gradInput.resizeAs(input).zero().scatter(dimension, indices, gradOutputView)
gradInput
}
override def toString(): String = {
s"${getPrintName}($dim${if (numInputDims != Int.MinValue) ", " + numInputDims else ""})"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Min[T]]
override def equals(other: Any): Boolean = other match {
case that: Min[T] =>
super.equals(that) &&
(that canEqual this) &&
dim == that.dim &&
numInputDims == that.numInputDims
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dim, numInputDims)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def clearState() : this.type = {
super.clearState()
values.set()
indices.set()
this
}
}
object Min {
def apply[@specialized(Float, Double) T: ClassTag](
dim : Int = 1,
numInputDims: Int = Int.MinValue)(implicit ev: TensorNumeric[T]) : Min[T] = {
new Min[T](dim, numInputDims)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy