com.intel.analytics.bigdl.nn.MultiCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{Activity, AbstractCriterion}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.T
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* a weighted sum of other criterions each applied to the same input and target;
*/
@SerialVersionUID(- 8679064077837483164L)
class MultiCriterion[@specialized(Float, Double) T: ClassTag]
(implicit ev: TensorNumeric[T]) extends AbstractCriterion[Activity, Activity, T] {
private val weights = new ArrayBuffer[Double]
private val criterions = T()
def add(criterion: AbstractCriterion[Activity, Activity, T], weight: Double = 1): Unit = {
criterions.insert(criterions.length() + 1, criterion)
weights.append(weight)
}
override def updateOutput(input: Activity, target: Activity): T = {
var i = 1
while (i <= criterions.length) {
output = ev.plus(output, ev.times(ev.fromType(weights(i-1)),
criterions[AbstractCriterion[Activity, Activity, T]](i).updateOutput(input, target)))
i +=1
}
output
}
override def updateGradInput(input: Activity, target: Activity): Activity = {
gradInput = Utils.recursiveResizeAs[T](gradInput,
input)
Utils.recursiveFill[T](gradInput, 0)
var i = 1
while (i <= criterions.length) {
Utils.recursiveAdd(gradInput, weights(i - 1),
criterions[AbstractCriterion[Activity, Activity, T]](i).updateGradInput(input, target))
i += 1
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[MultiCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: MultiCriterion[T] =>
super.equals(that) &&
(that canEqual this) &&
weights == that.weights
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), weights)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString(): String = {
s"nn.MultiCriterion"
}
}
object MultiCriterion {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : MultiCriterion[T] = {
new MultiCriterion[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy