com.intel.analytics.bigdl.nn.MultiLabelSoftMarginCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
*
* A MultiLabel multiclass criterion based on sigmoid:
* the loss is:
* l(x,y) = - sum_i y[i] * log(p[i]) + (1 - y[i]) * log (1 - p[i])
* where p[i] = exp(x[i]) / (1 + exp(x[i]))
* and with weights:
* l(x,y) = - sum_i weights[i] (y[i] * log(p[i]) + (1 - y[i]) * log (1 - p[i]))
*/
@SerialVersionUID(6780540545644361024L)
class MultiLabelSoftMarginCriterion[T: ClassTag]
(var weights: Tensor[T] = null, sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
var lsm = new Sigmoid[T]()
var nll = new BCECriterion[T](weights)
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
var _input: Tensor[T] = input
var _target: Tensor[T] = target
if (input.nElement() != 1) {
_input = input.clone().squeeze()
}
if (target.nElement() != 1) {
_target = target.clone().squeeze()
}
lsm.updateOutput(_input)
nll.updateOutput(lsm.output, _target)
output = nll.output
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
val size = input.size()
var _input: Tensor[T] = null
var _target: Tensor[T] = null
if (input.nElement() != 1) {
_input = input.clone().squeeze()
}
if (target.nElement() != 1) {
_target = target.squeeze()
}
nll.updateGradInput(lsm.output, _target)
lsm.updateGradInput(_input, nll.gradInput)
gradInput = lsm.gradInput.view(size)
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[MultiLabelSoftMarginCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: MultiLabelSoftMarginCriterion[T] =>
(that canEqual this) &&
gradInput == that.gradInput &&
lsm == that.lsm &&
nll == that.nll &&
weights == that.weights
case _ => false
}
override def hashCode(): Int = {
def getHashCode(x: Any) = if (x == null) 0 else x.hashCode()
val state = Seq(gradInput, lsm, nll, weights)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString: String = s"MultiLabelSoftMarginCriterion($weights)"
}
object MultiLabelSoftMarginCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
weights: Tensor[T] = null,
sizeAverage: Boolean = true
)(implicit ev: TensorNumeric[T]): MultiLabelSoftMarginCriterion[T] = {
new MultiLabelSoftMarginCriterion[T](weights, sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy