com.intel.analytics.bigdl.nn.MultiRNNCell.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter.ArrayConverter
import com.intel.analytics.bigdl.utils.{T, Table}
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* Enable user stack multiple simple cells.
*/
class MultiRNNCell[T : ClassTag](val cells: Array[Cell[T]])(implicit ev: TensorNumeric[T])
extends Cell[T](
hiddensShape = cells.last.hiddensShape,
regularizers = cells.flatMap(_.regularizers)) {
// inputDim and hidDim must be the same with Recurrent
private val inputDim = Recurrent.inputDim
private val hidDim = Recurrent.hidDim
override var preTopology: TensorModule[T] = null
override var cell: AbstractModule[Activity, Activity, T] = buildModel()
override def hidResize(hidden: Activity, batchSize: Int, stepShape: Array[Int]): Activity = {
if (hidden == null) {
hidResize(T(), batchSize, stepShape)
} else {
var i = 0
while (i < cells.size) {
hidden.toTable.insert(cells(i).hidResize(null, batchSize, stepShape))
i += 1
}
hidden
}
}
def buildModel(): Sequential[T] = {
val seq = Sequential()
cells.foreach{ cell =>
if (cell.preTopology != null) {
cell.includePreTopology = true
}
seq.add(cell)
}
seq
}
override def updateOutput(input: Table): Table = {
val result = T()
result(inputDim) = input(inputDim)
// states and outputStates is 1 based
val states = input(hidDim).asInstanceOf[Table]
val outputStates = T()
var i = 0
while (i < cells.length) {
result(hidDim) = states(i + 1)
cells(i).forward(result).toTable
result(inputDim) = cells(i).output.toTable(inputDim)
outputStates.insert(cells(i).output.toTable(hidDim))
i += 1
}
result(hidDim) = outputStates
this.output = result
output
}
override def updateGradInput(input: Table, gradOutput: Table): Table = {
var i = cells.length - 1
var error = T()
error(inputDim) = gradOutput(inputDim)
val states = input(hidDim).asInstanceOf[Table]
val gradStates = gradOutput(hidDim).asInstanceOf[Table]
val outputGradStates = T()
val nextInput = T()
while (i >= 0) {
val input0: Tensor[T] = if (i > 0) {
cells(i - 1).output.toTable(inputDim)
} else input(inputDim)
nextInput(inputDim) = input0
nextInput(hidDim) = states(i + 1)
error(hidDim) = gradStates(i + 1)
error = cells(i).updateGradInput(nextInput, error)
outputGradStates(i + 1) = error(hidDim)
i -= 1
}
this.gradInput = error
gradInput(hidDim) = outputGradStates
gradInput
}
override def accGradParameters(input: Table, gradOutput: Table): Unit = {
var i = cells.length - 1
val error = T()
error(inputDim) = gradOutput(inputDim)
val states = input(hidDim).asInstanceOf[Table]
val gradStates = gradOutput(hidDim).asInstanceOf[Table]
val nextInput = T()
while (i >= 0) {
val input0: Tensor[T] = if (i > 0) {
cells(i - 1).output.toTable(inputDim)
} else input(inputDim)
nextInput(inputDim) = input0
nextInput(hidDim) = states(i + 1)
error(hidDim) = gradStates(i + 1)
cells(i).accGradParameters(nextInput, error)
error(inputDim) = cells(i).gradInput.toTable(inputDim)
i -= 1
}
}
override def backward(input: Table, gradOutput: Table): Table = {
val before = System.nanoTime()
var i = cells.length - 1
var error = T()
error(inputDim) = gradOutput(inputDim)
val states = input(hidDim).asInstanceOf[Table]
val gradStates = gradOutput(hidDim).asInstanceOf[Table]
val outputGradStates = T()
val nextInput = T()
while (i >= 0) {
val input0: Tensor[T] = if (i > 0) {
cells(i - 1).output.toTable(inputDim)
} else input(inputDim)
nextInput(inputDim) = input0
nextInput(hidDim) = states(i + 1)
error(hidDim) = gradStates(i + 1)
error = cells(i).backward(nextInput, error)
outputGradStates(i + 1) = error(hidDim)
i -= 1
}
this.gradInput = error
gradInput(hidDim) = outputGradStates
backwardTime += System.nanoTime() - before
gradInput
}
override def reset(): Unit = {
cells.foreach(_.reset())
}
}
object MultiRNNCell extends ModuleSerializable {
def apply[@specialized(Float, Double) T: ClassTag](cells: Array[Cell[T]]
)(implicit ev: TensorNumeric[T]): MultiRNNCell[T] = {
new MultiRNNCell[T](cells)
}
override def doLoadModule[T: ClassTag](context : DeserializeContext)
(implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = {
val attrMap = context.bigdlModule.getAttrMap
val cells = DataConverter.getAttributeValue(context, attrMap.get("cells")).
asInstanceOf[Array[AbstractModule[_, _, T]]].map(_.asInstanceOf[Cell[T]])
val multiRNNCell = MultiRNNCell[T](cells)
CellSerializer.populateCellAttributes(context, multiRNNCell)
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
cellModuleBuilder : BigDLModule.Builder)
(implicit ev: TensorNumeric[T]) : Unit = {
CellSerializer.saveCellAttributes(context, cellModuleBuilder)
val cellsBuilder = AttrValue.newBuilder
ArrayConverter.setAttributeValue(context, cellsBuilder,
context.moduleData.module.asInstanceOf[MultiRNNCell[T]].cells,
scala.reflect.runtime.universe.typeOf[Array[_ <:
AbstractModule[_ <: Activity, _ <: Activity, _ <: Any]]])
cellModuleBuilder.putAttr("cells", cellsBuilder.build)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy