com.intel.analytics.bigdl.nn.NarrowTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Creates a module that takes a table as input and outputs the subtable starting at index
* offset having length elements (defaults to 1 element). The elements can be either
* a table or a Tensor. If `length` is negative, it means selecting the elements from the
* offset to element which located at the abs(`length`) to the last element of the input.
*
* @param offset the start index of table
* @param length the length want to select
*/
@SerialVersionUID(8046335768231475724L)
class NarrowTable[T: ClassTag](var offset: Int, val length: Int = 1)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Table, T]{
var len = length
override def updateOutput(input: Table): Table = {
output = T()
if (length < 0) {
len = input.length() - offset + 2 + length
}
var i = 1
while (i <= len) {
output.insert(i, input(offset + i -1))
i += 1
}
output
}
override def updateGradInput(input: Table, gradOutput: Table): Table = {
gradInput = T()
if (length < 0) {
len = input.length() - offset + 2 + length
}
var i = 1
while (i <= gradOutput.length()) {
gradInput.insert(offset + i - 1, gradOutput(i))
i += 1
}
i = 1
while (i <= input.length()) {
if (!gradInput.contains(i)) gradInput(i) = Tensor[T]()
if ((i < offset) || (i >= (offset + length))) {
gradInput(i) = Utils.recursiveResizeAs(gradInput(i), input(i))
Utils.recursiveFill(gradInput(i), 0)
}
i += 1
}
gradInput
}
override def toString(): String = {
s"${getPrintName}($offset, $length)"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[NarrowTable[T]]
override def equals(other: Any): Boolean = other match {
case that: NarrowTable[T] =>
super.equals(that) &&
(that canEqual this) &&
offset == that.offset &&
length == that.length
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), offset, length)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object NarrowTable {
def apply[@specialized(Float, Double) T: ClassTag](
offset: Int,
length: Int = 1)(implicit ev: TensorNumeric[T]) : NarrowTable[T] = {
new NarrowTable[T](offset, length)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy