com.intel.analytics.bigdl.nn.PGCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* The Criterion to compute the negative policy gradient given a
* multinomial distribution and the sampled action and reward.
*
* The input to this criterion should be a 2-D tensor representing
* a batch of multinomial distribution, the target should also be
* a 2-D tensor with the same size of input, representing the sampled
* action and reward/advantage with the index of non-zero element in the vector
* represents the sampled action and the non-zero element itself represents
* the reward. If the action is space is large, you should consider using
* SparseTensor for target.
*
* The loss computed is simple the standard policy gradient,
*
* loss = - 1/n * sum(R_{n} dot_product log(P_{n}))
*
* where R_{n} is the reward vector, and P_{n} is the input distribution.
*
* @param sizeAverage whether to average the loss over each observations.
*
*/
@SerialVersionUID(- 76404060368920472L)
class PGCriterion[T: ClassTag](
sizeAverage: Boolean = false)
(implicit ev: TensorNumeric[T])
extends TensorCriterion[T] {
private val criterion = {
val inputTrans = Sequential[T]()
inputTrans.add(Log[T]())
// to calculate the negative policy gradient, because we want maximize reward
inputTrans.add(MulConstant(-1))
TransformerCriterion[T](DotProductCriterion[T](sizeAverage), Some(inputTrans), None)
}
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
output = criterion.forward(input, target)
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
gradInput = criterion.backward(input, target).asInstanceOf[Tensor[T]]
gradInput
}
}
object PGCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = false)
(implicit ev: TensorNumeric[T]): PGCriterion[T] = {
new PGCriterion()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy