com.intel.analytics.bigdl.nn.Pack.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Stacks a list of n-dimensional tensors into one (n+1)-dimensional tensor.
* @param dimension the dimension to stack along
* @tparam T Numeric type. Only support float/double now
*/
@SerialVersionUID(3457313421501931556L)
class Pack[T: ClassTag] (val dimension: Int)(implicit ev: TensorNumeric[T])
extends AbstractModule[Activity, Tensor[_], T] {
private def getPositiveDimension(input: Table): Int = {
var nDim = this.dimension
val firstInput: Tensor[_] = input(1)
if (nDim < 0) {
nDim = firstInput.dim() + nDim + 1
}
require(nDim <= firstInput.dim() + 1, "dimension exceeds input dimensions" +
s"dimension $nDim, inputDimension ${firstInput.dim()}")
nDim
}
override def updateOutput(input: Activity): Tensor[_] = {
val tableInput = input match {
case t: Tensor[_] => T(t)
case t: Table => t
}
val dimension = getPositiveDimension(tableInput)
val firstInput: Tensor[_] = tableInput(1)
val nDim = firstInput.nDimension()
val size: Array[Int] = new Array[Int](nDim + 1)
var i = 1
while(i <= nDim + 1) {
if (i < dimension) {
size(i-1) = firstInput.size(i)
} else if (i == dimension) {
size(i-1) = tableInput.length()
} else {
size(i-1) = firstInput.size(i - 1)
}
i = i + 1
}
if (output.getType() != firstInput.getType()) {
output = firstInput.emptyInstance()
}
output.resize(size)
i = 1
while (i <= tableInput.length()) {
val currentOutput = tableInput[Tensor[NumericWildcard]](i)
output.narrow(dimension, i, 1).asInstanceOf[Tensor[NumericWildcard]]
.copy(currentOutput)
i += 1
}
output
}
override def updateGradInput(input: Activity, gradOutput: Tensor[_]): Activity = {
val tableInput = input match {
case t: Tensor[_] => T(t)
case t: Table => t
}
val dimension = getPositiveDimension(tableInput)
val firstInput = tableInput[Tensor[_]](1)
if (input.isTensor) {
if (gradInput == null ||
gradInput.asInstanceOf[Tensor[_]].getType() != firstInput.getType()) {
gradInput = firstInput.emptyInstance()
}
val gradInputTensor = gradInput.asInstanceOf[Tensor[NumericWildcard]]
gradInputTensor.resizeAs(firstInput)
gradInputTensor.copy(firstInput.asInstanceOf[Tensor[NumericWildcard]])
} else {
if (gradInput == null) gradInput = T()
val gradInputTable = gradInput.toTable
var i = 1
while (i <= tableInput.length()) {
if (!gradInputTable.contains(i)) {
gradInputTable(i) = gradOutput.emptyInstance()
}
gradInputTable[Tensor[_]](i).resizeAs(tableInput(i))
i += 1
}
i = 1
while (i <= tableInput.length()) {
val currentGradInput = gradOutput.select(dimension, i).asInstanceOf[Tensor[NumericWildcard]]
gradInputTable[Tensor[NumericWildcard]](i).copy(currentGradInput)
i += 1
}
}
gradInput
}
}
object Pack {
def apply[T: ClassTag](
dimension: Int)(implicit ev: TensorNumeric[T]): Pack[T] = {
new Pack[T](dimension)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy