com.intel.analytics.bigdl.nn.Power.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Apply an element-wise power operation with scale and shift.
*
* f(x) = (shift + scale * x)^power^
*
* @param power the exponent.
* @param scale Default is 1.
* @param shift Default is 0.
*/
@SerialVersionUID(- 6637789603381436472L)
class Power[T: ClassTag](
val power: Double,
val scale : Double = 1,
val shift : Double = 0)
(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
val diffScale = power * scale
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
output.copy(input)
if(scale != 1) {
output.mul(ev.fromType[Double](scale))
}
if(shift != 0) {
output.add(ev.fromType[Double](shift))
}
if(power != 1) {
output.pow(output, ev.fromType[Double](power))
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input)
// Compute dy/dx = scale * power * (shift + scale * x)^(power - 1)
// = diff_scale * y / (shift + scale * x)
if(power == 2) {
// Special case for y = (shift + scale * x)^2
// -> dy/dx = 2 * scale * (shift + scale * x)
// = diff_scale * shift + diff_scale * scale * x
gradInput.copy(input)
gradInput.mul(ev.fromType[Double](diffScale * scale))
if(shift != 0) {
gradInput.add(ev.fromType(diffScale * shift))
}
} else if (shift == 0) {
// Special case for y = (scale * x)^power
// -> dy/dx = scale * power * (scale * x)^(power - 1)
// = scale * power * (scale * x)^power * (scale * x)^(-1)
// = power * y / x
gradInput.fill(ev.fromType[Int](0))
gradInput.addcdiv(ev.fromType[Double](power), output, input)
} else {
gradInput.copy(input)
if(scale != 1) {
gradInput.mul(ev.fromType[Double](scale))
}
if(shift != 0) {
gradInput.add(ev.fromType[Double](shift))
}
gradInput.cdiv(output, gradInput)
if (diffScale != 1) {
gradInput.mul(ev.fromType[Double](diffScale))
}
}
if(diffScale != 0) {
gradInput.cmul(gradOutput)
}
gradInput
}
override def toString(): String = {
s"${getPrintName}($power, $scale, $shift)"
}
override def computeOutputShape(inputShape: Shape): Shape = {
inputShape
}
}
object Power {
def apply[@specialized(Float, Double) T: ClassTag](
power: Double,
scale : Double = 1,
shift : Double = 0)(implicit ev: TensorNumeric[T]): Power[T] = {
new Power[T](power, scale, shift)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy