com.intel.analytics.bigdl.nn.RReLU.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.RandomGenerator._
import scala.reflect.ClassTag
/**
* Applies the randomized leaky rectified linear unit (RReLU) element-wise to the input Tensor,
* thus outputting a Tensor of the same dimension.
* Informally the RReLU is also known as 'insanity' layer.
* RReLU is defined as: f(x) = max(0,x) + a * min(0, x) where a ~ U(l, u).
* In training mode negative inputs are multiplied by a factor drawn from a uniform random
* distribution U(l, u).
* In evaluation mode a RReLU behaves like a LeakyReLU with a constant mean
* factor a = (l + u) / 2.
* By default, l = 1/8 and u = 1/3.
* If l == u a RReLU effectively becomes a LeakyReLU.
* Regardless of operating in in-place mode a RReLU will internally
* allocate an input-sized noise tensor to store random factors for negative inputs.
* The backward() operation assumes that forward() has been called before.
* For reference see [Empirical Evaluation of Rectified Activations in Convolutional
* Network](http://arxiv.org/abs/1505.00853).
*
* @param lower lower boundary of uniform random distribution
* @param upper upper boundary of uniform random distribution
* @param inplace optionally do its operation in-place without using extra state memory
* @tparam T data type
*/
@SerialVersionUID(- 9012115082607155821L)
class RReLU[T: ClassTag](
val lower: Double = 1.0/8,
val upper: Double = 1.0/3,
inplace: Boolean = false)(
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
@transient
var noise: Tensor[T] = null
require(lower < upper && lower > 0 && upper > 0)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
if (noise == null) {
noise = Tensor[T]()
}
if (train) {
noise.resizeAs(input)
if (inplace) {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], index1: Int, data2: Array[T], index2: Int): Unit = {
if (ev.isGreaterEq(ev.fromType[Int](0), data1(index1))) {
val r = ev.fromType[Double](RNG.uniform(lower, upper))
data1(index1) = ev.times(data1(index1), r)
data2(index2) = r
} else {
data2(index2) = ev.fromType[Int](1)
}
}
}
DenseTensorApply.apply2[T](input, noise, func)
output.set(input)
} else {
output.resizeAs(input)
val func = new TensorFunc6[T] {
override def apply (data1: Array[T], offset1: Int, data2: Array[T],
offset2: Int, data3: Array[T], offset3: Int): Unit = {
if (ev.isGreaterEq(ev.fromType[Int](0), data1(offset1))) {
val r = ev.fromType[Double](RNG.uniform(lower, upper))
data2(offset2) = ev.times(data1(offset1), r)
data3(offset3) = r
} else {
data2(offset2) = data1(offset1)
data3(offset3) = ev.fromType[Int](1)
}
}
}
DenseTensorApply.apply3[T](input, output, noise, func)
}
} else {
val negSlope = (lower + upper) / 2
if (inplace) {
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
if (ev.isGreaterEq(ev.fromType[Int](0), data(index))) {
data(index) = ev.times(data(index), ev.fromType[Double](negSlope))
}
}
}
DenseTensorApply.apply1[T](input, func)
output.set(input)
} else {
output.resizeAs(input)
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], index1: Int, data2: Array[T], index2: Int): Unit = {
val r = if (ev.isGreaterEq(ev.fromType[Int](0), data1(index1))) negSlope else 1
data2(index2) = ev.times(ev.fromType[Double](r), data1(index1))
}
}
DenseTensorApply.apply2[T](input, output, func)
}
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(gradOutput),
"input and gradOutput should be same size" +
s"input ${input.nElement()} gradOutput ${gradOutput.nElement()}")
if (noise == null) {
noise = Tensor[T]()
}
if (train && upper - lower > 1E-6) {
if (inplace) {
gradOutput.cmul(gradOutput, noise)
gradInput.set(gradOutput)
} else {
gradInput.resizeAs(input)
gradInput.cmul(gradOutput, noise)
}
} else {
val negSlope = (lower + upper) / 2
if (inplace) {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], index1: Int, data2: Array[T], index2: Int): Unit = {
if (ev.isGreaterEq(ev.fromType[Int](0), data1(index1))) {
data1(index1) = ev.times(data1(index1), ev.fromType[Double](negSlope))
}
}
}
DenseTensorApply.apply2[T](gradOutput, input, func)
gradInput.set(gradOutput)
} else {
gradInput.resizeAs(input)
val func = new TensorFunc6[T] {
override def apply (data1: Array[T], offset1: Int, data2: Array[T],
offset2: Int, data3: Array[T], offset3: Int): Unit = {
data1(offset1) = if (ev.isGreaterEq(ev.fromType[Int](0), data3(offset3))) {
ev.times(data2(offset2), ev.fromType[Double](negSlope))
} else {
data2(offset2)
}
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, input, func)
}
}
gradInput
}
override def toString: String = {
"nn.RReLU"
}
override def clearState(): this.type = {
if (!inplace) {
super.clearState()
}
this
}
}
object RReLU {
def apply[@specialized(Float, Double) T: ClassTag](
lower: Double = 1.0/8,
upper: Double = 1.0/3,
inplace: Boolean = false)(implicit ev: TensorNumeric[T]) : RReLU[T] = {
new RReLU[T](lower, upper, inplace)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy