com.intel.analytics.bigdl.nn.RoiAlign.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect._
/**
* Region of interest aligning (RoIAlign) for Mask-RCNN
*
* The RoIAlign uses average pooling on bilinear-interpolated sub-windows to convert
* the features inside any valid region of interest into a small feature map with a
* fixed spatial extent of pooledH * pooledW (e.g., 7 * 7).
* An RoI is a rectangular window into a conv feature map.
* Each RoI is defined by a four-tuple (x1, y1, x2, y2) that specifies its
* top-left corner (x1, y1) and its bottom-right corner (x2, y2).
* RoIAlign works by dividing the h * w RoI window into an pooledH * pooledW grid of
* sub-windows of approximate size h/H * w/W. In each sub-window, compute exact values
* of input features at four regularly sampled locations, and then do average pooling on
* the values in each sub-window.
* Pooling is applied independently to each feature map channel
* @param spatialScale Spatial scale
* @param samplingRatio Sampling ratio
* @param pooledH spatial extent in height
* @param pooledW spatial extent in width
*/
class RoiAlign[T: ClassTag] (
val spatialScale: Float,
val samplingRatio: Int,
val pooledH: Int,
val pooledW: Int,
val mode: String = "avg",
val aligned: Boolean = true
)(implicit ev: TensorNumeric[T]) extends AbstractModule[Activity, Tensor[T], T]{
override def updateOutput(input: Activity): Tensor[T] = {
if (classTag[T] == classTag[Float]) {
val data = input.toTable[Tensor[Float]](1)
val rois = input.toTable[Tensor[Float]](2)
val num_rois = rois.size(1)
val channels = data.size(2)
val height = data.size(3)
val width = data.size(4)
output.resize(num_rois, channels, pooledH, pooledW)
.fill(ev.fromType[Float](Float.MinValue))
require(output.nElement() != 0, "Output contains no elements")
val inputData = data.storage().array()
val outputData = output.storage().array().asInstanceOf[Array[Float]]
val roisFloat = rois.storage().array()
poolOneRoiFloat(
inputData,
outputData,
roisFloat,
num_rois,
channels,
height,
width,
spatialScale)
} else if (classTag[T] == classTag[Double]) {
val data = input.toTable[Tensor[Double]](1)
val rois = input.toTable[Tensor[Double]](2)
val num_rois = rois.size(1)
val channels = data.size(2)
val height = data.size(3)
val width = data.size(4)
output.resize(num_rois, channels, pooledH, pooledW)
.fill(ev.fromType[Double](Float.MinValue))
require(output.nElement() != 0, "Output contains no elements")
val inputData = data.storage().array()
val outputData = output.storage().array().asInstanceOf[Array[Double]]
val roisFloat = rois.storage().array()
poolOneRoiDouble(
inputData,
outputData,
roisFloat,
num_rois,
channels,
height,
width,
spatialScale)
} else {
throw new IllegalArgumentException("currently only Double and Float types are supported")
}
output
}
private def bilinearInterpolateGradient(height: Int, width: Int, y: Float, x: Float)
: (Float, Float, Float, Float, Int, Int, Int, Int) = {
var w1: Float = 0.0f
var w2: Float = 0.0f
var w3: Float = 0.0f
var w4: Float = 0.0f
var x_low : Int = 0
var x_high: Int = 0
var y_low: Int = 0
var y_high: Int = 0
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
return (w1, w2, w3, w4, x_low, x_high, y_low, y_high)
}
var realY = if (y <= 0) 0 else y
var realX = if (x <= 0) 0 else x
y_low = realY.toInt
x_low = realX.toInt
if (y_low >= height - 1) {
y_high = height - 1
y_low = height - 1
realY = y_low
} else y_high = y_low + 1
if (x_low >= width - 1) {
x_high = width - 1
x_low = width - 1
realX = x_low
} else x_high = x_low + 1
val ly = realY - y_low
val lx = realX - x_low
val hy = 1.0 - ly
val hx = 1.0 - lx
w1 = (hy * hx).toFloat
w2 = (hy * lx).toFloat
w3 = (ly * hx).toFloat
w4 = (ly * lx).toFloat
return (w1, w2, w3, w4, x_low, x_high, y_low, y_high)
}
private def roiAlignBackward(
nums: Int,
gradOutputArr: Array[T],
gradInputArr: Array[T],
gradInputOffset: Int,
rois: Array[T],
channels: Int,
height: Int,
width: Int,
pooled_height: Int,
pooled_width: Int,
sampling_ratio : Int,
n_stride : Int,
c_stride : Int,
h_stride : Int,
w_stride : Int,
spatial_scale: Float) {
val roi_cols = 4
for (index <- 0 until nums) {
val pw = index % pooled_width
val ph = (index / pooled_width) % pooled_height
val c = (index / pooled_width / pooled_height) % channels
val n = index / pooled_width / pooled_height / channels
val offset_rois = n * roi_cols
val offset = if (aligned) 0.5f else 0.0f
val roi_start_w = ev.toType[Float](rois(offset_rois)) * spatial_scale - offset
val roi_start_h = ev.toType[Float](rois(offset_rois + 1)) * spatial_scale - offset
val roi_end_w = ev.toType[Float](rois(offset_rois + 2)) * spatial_scale - offset
val roi_end_h = ev.toType[Float](rois(offset_rois + 3)) * spatial_scale - offset
var roi_width = roi_end_w - roi_start_w
var roi_height = roi_end_h - roi_start_h
if (aligned) {
require(roi_width >= 0 && roi_height >= 0,
s"ROIs in ROIAlign do not have non-negative size!" +
s"But get ${roi_height} ${roi_width}")
} else {
roi_width = math.max(roi_width, 1.0f)
roi_height = math.max(roi_height, 1.0f)
}
val bin_size_h = roi_height / pooled_height
val bin_size_w = roi_width / pooled_width
val output_offset = n * n_stride + c * c_stride
val grad_output_value = gradOutputArr(output_offset + ph * h_stride + pw * w_stride)
// We use roi_bin_grid to sample the grid and mimic integral
val roi_bin_grid_h =
if (sampling_ratio > 0) sampling_ratio else math.ceil(roi_height / pooled_height).toInt
val roi_bin_grid_w =
if (sampling_ratio > 0) sampling_ratio else math.ceil(roi_width / pooled_width).toInt
// We do average (integral) pooling inside a bin
val count = roi_bin_grid_h * roi_bin_grid_w
for (iy <- 0 until roi_bin_grid_h) {
val y = roi_start_h + ph * bin_size_h + (iy + 0.5) * bin_size_h / roi_bin_grid_h
for (ix <- 0 until roi_bin_grid_w) {
val x = roi_start_w + pw * bin_size_w + (ix + 0.5) * bin_size_w / roi_bin_grid_w
val (w1, w2, w3, w4, x_low, x_high, y_low, y_high) =
bilinearInterpolateGradient(height, width, y.toFloat, x.toFloat)
val g1 = ev.times(grad_output_value, ev.fromType(w1 / count))
val g2 = ev.times(grad_output_value, ev.fromType(w2 / count))
val g3 = ev.times(grad_output_value, ev.fromType(w3 / count))
val g4 = ev.times(grad_output_value, ev.fromType(w4 / count))
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
gradInputArr(gradInputOffset + y_low * width + x_low) =
ev.plus(gradInputArr(gradInputOffset + y_low * width + x_low), g1)
gradInputArr(gradInputOffset + y_low * width + x_high) =
ev.plus(gradInputArr(gradInputOffset + y_low * width + x_high), g2)
gradInputArr(gradInputOffset + y_high * width + x_low) =
ev.plus(gradInputArr(gradInputOffset + y_high * width + x_low), g3)
gradInputArr(gradInputOffset + y_high * width + x_high) =
ev.plus(gradInputArr(gradInputOffset + y_high * width + x_high), g4)
}
}
}
}
}
override def updateGradInput(input: Activity, gradOutput: Tensor[T]): Activity = {
require(mode == "avg", s"Only support backward for average mode, but get ${mode}")
val data = input.toTable[Tensor[T]](1)
val rois = input.toTable[Tensor[T]](2)
val num_rois = rois.size(1)
val channels = data.size(2)
val height = data.size(3)
val width = data.size(4)
require(gradOutput.isContiguous(), "gradOutput should be contiguous")
require(gradOutput.dim() == 4, s"gradOutput should be with 4 dims, but get ${gradOutput.dim()}")
val n_stride = gradOutput.stride(1)
val c_stride = gradOutput.stride(2)
val h_stride = gradOutput.stride(3)
val w_stride = gradOutput.stride(4)
if (gradInput == null) gradInput = Tensor[T]()
gradInput.toTensor[T].resize(channels, height, width)
val gradInputArr = gradInput.toTensor[T].storage().array()
val gradInputOffset = gradInput.toTensor[T].storageOffset() - 1
roiAlignBackward(
gradOutput.nElement(),
gradOutputArr = gradOutput.asInstanceOf[Tensor[T]].storage().array(),
gradInputArr = gradInputArr,
gradInputOffset = 0,
rois = rois.storage().array(),
channels = channels,
height = height,
width = width,
pooled_height = pooledH,
pooled_width = pooledW,
sampling_ratio = samplingRatio,
n_stride = n_stride,
c_stride = c_stride,
h_stride = h_stride,
w_stride = w_stride,
spatial_scale = spatialScale)
gradInput
}
private def poolOneRoiFloat(
inputData: Array[Float],
outputData: Array[Float],
roisFloat: Array[Float],
num_rois: Int,
channels: Int,
height: Int,
width: Int,
spatialScale: Float
): Unit = {
val roi_cols = 4 // bbox has 4 elements
for (n <- 0 until num_rois) {
val index_n = n * channels * pooledW * pooledH
val offset_rois = n * roi_cols
val roi_batch_ind = 0 // bbox has 4 elements
val alignedOffset = if (aligned) 0.5f else 0.0f
val roi_start_w = roisFloat(offset_rois) * spatialScale - alignedOffset
val roi_start_h = roisFloat(offset_rois + 1) * spatialScale - alignedOffset
val roi_end_w = roisFloat(offset_rois + 2) * spatialScale - alignedOffset
val roi_end_h = roisFloat(offset_rois + 3) * spatialScale - alignedOffset
var roi_width = roi_end_w - roi_start_w
var roi_height = roi_end_h - roi_start_h
if (aligned) {
require(roi_width >= 0 && roi_height >= 0,
"ROIs in ROIAlign cannot have non-negative size!")
} else {
roi_width = math.max(roi_width, 1.0f)
roi_height = math.max(roi_height, 1.0f)
}
val bin_size_h = roi_height/ pooledH
val bin_size_w = roi_width / pooledW
val roi_bin_grid_h = if (samplingRatio > 0) {
samplingRatio
} else {
Math.ceil(roi_height / pooledH).toInt
}
val roi_bin_grid_w = if (samplingRatio > 0) {
samplingRatio
} else {
Math.ceil(roi_width / pooledW).toInt
}
val count: Float = math.max(roi_bin_grid_h * roi_bin_grid_w, 1.0f)
val pre_cal = Tensor[Float](
Array(pooledH * pooledW * roi_bin_grid_h * roi_bin_grid_w, 8))
preCalcForBilinearInterpolateFloat(
height,
width,
roi_bin_grid_h,
roi_bin_grid_w,
roi_start_h,
roi_start_w,
bin_size_h,
bin_size_w,
roi_bin_grid_h,
roi_bin_grid_w,
pre_cal
)
mode match {
case "avg" =>
for (c <- 0 until channels) {
val index_n_c = index_n + c * pooledW * pooledH
val offset_data = (roi_batch_ind * channels + c) * height * width
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
val index = index_n_c + ph * pooledW + pw
var output_val: Float = 0.0f
for (iy <- 0 until roi_bin_grid_h) {
for (ix <- 0 until roi_bin_grid_w) {
val pc = pre_cal(pre_calc_index)
val pos1 = pc.valueAt(1).toInt
val pos2 = pc.valueAt(2).toInt
val pos3 = pc.valueAt(3).toInt
val pos4 = pc.valueAt(4).toInt
val w1 = pc.valueAt(5)
val w2 = pc.valueAt(6)
val w3 = pc.valueAt(7)
val w4 = pc.valueAt(8)
output_val = output_val + w1 * inputData(offset_data.toInt + pos1) +
w2 * inputData(offset_data.toInt + pos2) +
w3 * inputData(offset_data.toInt + pos3) +
w4 * inputData(offset_data.toInt + pos4)
pre_calc_index += 1
}
}
output_val /= count
outputData(index) = output_val
}
}
}
case "max" =>
for (c <- 0 until channels) {
val index_n_c = index_n + c * pooledW * pooledH
val offset_data = (roi_batch_ind * channels + c) * height * width
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
val index = index_n_c + ph * pooledW + pw
var output_val = Float.MinValue
for (iy <- 0 until roi_bin_grid_h) {
for (ix <- 0 until roi_bin_grid_w) {
val pc = pre_cal(pre_calc_index)
val pos1 = pc.valueAt(1).toInt
val pos2 = pc.valueAt(2).toInt
val pos3 = pc.valueAt(3).toInt
val pos4 = pc.valueAt(4).toInt
val w1 = pc.valueAt(5)
val w2 = pc.valueAt(6)
val w3 = pc.valueAt(7)
val w4 = pc.valueAt(8)
val value = w1 * inputData(offset_data.toInt + pos1) +
w2 * inputData(offset_data.toInt + pos2) +
w3 * inputData(offset_data.toInt + pos3) +
w4 * inputData(offset_data.toInt + pos4)
if (value > output_val) {
output_val = value
}
pre_calc_index += 1
}
}
outputData(index) = output_val
}
}
}
}
}
}
private def preCalcForBilinearInterpolateFloat(
height: Int,
width: Int,
iy_upper: Int,
ix_upper: Int,
roi_start_h: Float,
roi_start_w: Float,
bin_size_h: Float,
bin_size_w: Float,
roi_bin_grid_h: Int,
roi_bin_grid_w: Int,
pre_cal: Tensor[Float]
) : Unit = {
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
for (iy <- 0 until iy_upper) {
val yy = roi_start_h + ph * bin_size_h + (iy + 0.5f) * bin_size_h / roi_bin_grid_h
for (ix <- 0 until ix_upper) {
val xx = roi_start_w + pw * bin_size_w + (ix + 0.5f) * bin_size_w / roi_bin_grid_w
var x = xx
var y = yy
if (y < -1.0 || y > height || x < -1.0 || x > width) {
pre_cal.setValue(pre_calc_index, 1, 0.0f) // pos1
pre_cal.setValue(pre_calc_index, 2, 0.0f) // pos2
pre_cal.setValue(pre_calc_index, 3, 0.0f) // pos3
pre_cal.setValue(pre_calc_index, 4, 0.0f) // pos4
pre_cal.setValue(pre_calc_index, 5, 0.0f) // w1
pre_cal.setValue(pre_calc_index, 6, 0.0f) // w2
pre_cal.setValue(pre_calc_index, 7, 0.0f) // w3
pre_cal.setValue(pre_calc_index, 8, 0.0f) // w4
pre_calc_index += 1
} else {
if (y <= 0) {
y = 0
}
if (x <= 0) {
x = 0
}
var y_low = y.toInt
var x_low = x.toInt
val y_high = if (y_low >= height - 1) {
y_low = height -1
y = y_low.toFloat
y_low
} else {
y_low + 1
}
val x_high = if (x_low >= width - 1) {
x_low = width -1
x = x_low.toFloat
x_low
} else {
x_low + 1
}
val ly = y - y_low
val lx = x - x_low
val hy = 1.0f - ly
val hx = 1.0f - lx
val w1 = hy * hx
val w2 = hy * lx
val w3 = ly * hx
val w4 = ly * lx
pre_cal.setValue(pre_calc_index, 1, y_low * width + x_low)
pre_cal.setValue(pre_calc_index, 2, y_low * width + x_high)
pre_cal.setValue(pre_calc_index, 3, y_high * width + x_low)
pre_cal.setValue(pre_calc_index, 4, y_high * width + x_high)
pre_cal.setValue(pre_calc_index, 5, w1)
pre_cal.setValue(pre_calc_index, 6, w2)
pre_cal.setValue(pre_calc_index, 7, w3)
pre_cal.setValue(pre_calc_index, 8, w4)
pre_calc_index += 1
}
}
}
}
}
}
private def poolOneRoiDouble(
inputData: Array[Double],
outputData: Array[Double],
roisDouble: Array[Double],
num_rois: Int,
channels: Int,
height: Int,
width: Int,
spatialScale: Float
): Unit = {
val roi_cols = 4 // bbox has 4 elements
for (n <- 0 until num_rois) {
val index_n = n * channels * pooledW * pooledH
val offset_rois = n * roi_cols
val roi_batch_ind = 0
val alignedOffset = if (aligned) 0.5f else 0.0f
val roi_start_w = roisDouble(offset_rois) * spatialScale - alignedOffset
val roi_start_h = roisDouble(offset_rois + 1) * spatialScale - alignedOffset
val roi_end_w = roisDouble(offset_rois + 2) * spatialScale - alignedOffset
val roi_end_h = roisDouble(offset_rois + 3) * spatialScale - alignedOffset
var roi_width = roi_end_w - roi_start_w
var roi_height = roi_end_h - roi_start_h
if (aligned) {
require(roi_width >= 0 && roi_height >= 0,
"ROIs in ROIAlign cannot have non-negative size!")
} else {
roi_width = math.max(roi_width, 1.0f)
roi_height = math.max(roi_height, 1.0f)
}
val bin_size_h = roi_height/ pooledH
val bin_size_w = roi_width / pooledW
val roi_bin_grid_h = if (samplingRatio > 0) {
samplingRatio
} else {
Math.ceil(roi_height / pooledH).toInt
}
val roi_bin_grid_w = if (samplingRatio > 0) {
samplingRatio
} else {
Math.ceil(roi_width / pooledW).toInt
}
val count: Double = math.max(roi_bin_grid_h * roi_bin_grid_w, 1.0f)
val pre_cal = Tensor[Double](
Array(pooledH * pooledW * roi_bin_grid_h * roi_bin_grid_w, 8))
preCalcForBilinearInterpolateDouble(
height,
width,
roi_bin_grid_h,
roi_bin_grid_w,
roi_start_h,
roi_start_w,
bin_size_h,
bin_size_w,
roi_bin_grid_h,
roi_bin_grid_w,
pre_cal
)
mode match {
case "avg" =>
for (c <- 0 until channels) {
val index_n_c = index_n + c * pooledW * pooledH
val offset_data = (roi_batch_ind * channels + c) * height * width
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
val index = index_n_c + ph * pooledW + pw
var output_val: Double = 0.0
for (iy <- 0 until roi_bin_grid_h) {
for (ix <- 0 until roi_bin_grid_w) {
val pc = pre_cal(pre_calc_index)
val pos1 = pc.valueAt(1).toInt
val pos2 = pc.valueAt(2).toInt
val pos3 = pc.valueAt(3).toInt
val pos4 = pc.valueAt(4).toInt
val w1 = pc.valueAt(5)
val w2 = pc.valueAt(6)
val w3 = pc.valueAt(7)
val w4 = pc.valueAt(8)
output_val = output_val + w1 * inputData(offset_data.toInt + pos1) +
w2 * inputData(offset_data.toInt + pos2) +
w3 * inputData(offset_data.toInt + pos3) +
w4 * inputData(offset_data.toInt + pos4)
pre_calc_index += 1
}
}
output_val /= count
outputData(index) = output_val
}
}
}
case "max" =>
for (c <- 0 until channels) {
val index_n_c = index_n + c * pooledW * pooledH
val offset_data = (roi_batch_ind * channels + c) * height * width
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
val index = index_n_c + ph * pooledW + pw
var output_val = Double.MinValue
for (iy <- 0 until roi_bin_grid_h) {
for (ix <- 0 until roi_bin_grid_w) {
val pc = pre_cal(pre_calc_index)
val pos1 = pc.valueAt(1).toInt
val pos2 = pc.valueAt(2).toInt
val pos3 = pc.valueAt(3).toInt
val pos4 = pc.valueAt(4).toInt
val w1 = pc.valueAt(5)
val w2 = pc.valueAt(6)
val w3 = pc.valueAt(7)
val w4 = pc.valueAt(8)
val value = w1 * inputData(offset_data.toInt + pos1) +
w2 * inputData(offset_data.toInt + pos2) +
w3 * inputData(offset_data.toInt + pos3) +
w4 * inputData(offset_data.toInt + pos4)
if (value > output_val) {
output_val = value
}
pre_calc_index += 1
}
}
outputData(index) = output_val
}
}
}
}
}
}
private def preCalcForBilinearInterpolateDouble(
height: Int,
width: Int,
iy_upper: Int,
ix_upper: Int,
roi_start_h: Double,
roi_start_w: Double,
bin_size_h: Double,
bin_size_w: Double,
roi_bin_grid_h: Int,
roi_bin_grid_w: Int,
pre_cal: Tensor[Double]
) : Unit = {
var pre_calc_index: Int = 1
for (ph <- 0 until pooledH) {
for (pw <- 0 until pooledW) {
for (iy <- 0 until iy_upper) {
val yy = roi_start_h + ph * bin_size_h + (iy + 0.5) * bin_size_h / roi_bin_grid_h
for (ix <- 0 until ix_upper) {
val xx = roi_start_w + pw * bin_size_w + (ix + 0.5) * bin_size_w / roi_bin_grid_w
var x = xx
var y = yy
if (y < -1.0 || y > height || x < -1.0 || x > width) {
pre_cal.setValue(pre_calc_index, 1, 0.0) // pos1
pre_cal.setValue(pre_calc_index, 2, 0.0) // pos2
pre_cal.setValue(pre_calc_index, 3, 0.0) // pos3
pre_cal.setValue(pre_calc_index, 4, 0.0) // pos4
pre_cal.setValue(pre_calc_index, 5, 0.0) // w1
pre_cal.setValue(pre_calc_index, 6, 0.0) // w2
pre_cal.setValue(pre_calc_index, 7, 0.0) // w3
pre_cal.setValue(pre_calc_index, 8, 0.0) // w4
pre_calc_index += 1
}
else {
if (y <= 0) {
y = 0
}
if (x <= 0) {
x = 0
}
var y_low = y.toInt
var x_low = x.toInt
val y_high = if (y_low >= height - 1) {
y_low = height -1
y = y_low.toDouble
y_low
} else {
y_low + 1
}
val x_high = if (x_low >= width - 1) {
x_low = width -1
x = x_low.toDouble
x_low
} else {
x_low + 1
}
val ly = y - y_low
val lx = x - x_low
val hy = 1.0f - ly
val hx = 1.0f - lx
val w1 = hy * hx
val w2 = hy * lx
val w3 = ly * hx
val w4 = ly * lx
pre_cal.setValue(pre_calc_index, 1, y_low * width + x_low)
pre_cal.setValue(pre_calc_index, 2, y_low * width + x_high)
pre_cal.setValue(pre_calc_index, 3, y_high * width + x_low)
pre_cal.setValue(pre_calc_index, 4, y_high * width + x_high)
pre_cal.setValue(pre_calc_index, 5, w1)
pre_cal.setValue(pre_calc_index, 6, w2)
pre_cal.setValue(pre_calc_index, 7, w3)
pre_cal.setValue(pre_calc_index, 8, w4)
pre_calc_index += 1
}
}
}
}
}
}
override def toString: String = "nn.RoiAlign"
override def clearState(): this.type = {
super.clearState()
this
}
}
object RoiAlign {
def apply[@specialized(Float, Double) T: ClassTag](
spatialScale: Float,
samplingRatio: Int,
pooledH: Int,
pooledW: Int,
mode: String = "avg",
aligned: Boolean = true
) (implicit ev: TensorNumeric[T]): RoiAlign[T] =
new RoiAlign[T](spatialScale, samplingRatio, pooledH, pooledW, mode, aligned)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy