com.intel.analytics.bigdl.nn.RoiPooling.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect._
/**
* Region of interest pooling
* The RoIPooling uses max pooling to convert the features inside any valid region of interest
* into a small feature map with a fixed spatial extent of pooledH × pooledW (e.g., 7 × 7)
* an RoI is a rectangular window into a conv feature map.
* Each RoI is defined by a four-tuple (x1, y1, x2, y2) that specifies its
* top-left corner (x1, y1) and its bottom-right corner (x2, y2).
* RoI max pooling works by dividing the h × w RoI window into an pooledH × pooledW grid of
* sub-windows of approximate size h/H × w/W and then max-pooling the values in each sub-window
* into the corresponding output grid cell.
* Pooling is applied independently to each feature map channel
* @param pooledW spatial extent in width
* @param pooledH spatial extent in height
* @param spatialScale spatial scale
* @tparam T Numeric type. Only support float/double now
*/
class RoiPooling[T: ClassTag](val pooledW: Int, val pooledH: Int, val spatialScale: T)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Tensor[T], T] {
private val argmax: Tensor[T] = Tensor[T]
private val gradInputTensor: Tensor[T] = Tensor[T]
gradInput.insert(gradInputTensor)
override def updateOutput(input: Table): Tensor[T] = {
require(input.length() == 2,
"there must have two tensors in the table," +
s" number of tensors ${input.length()}")
val data = input[Tensor[T]](1) // Input data to ROIPooling
val rois = input[Tensor[T]](2) // Input label to ROIPooling
require(rois.size().length > 1 && rois.size(2) == 5,
"roi input shape should be (R, 5), " +
s"input shape [${rois.size().length},${rois.size(2)}]")
output.resize(rois.size(1), data.size(2), pooledH, pooledW)
.fill(ev.fromType[Double](Double.MinValue))
argmax.resizeAs(output).fill(ev.fromType(-1))
val dataOffset = offset(0, 1, sizes = data.size())
val argmaxOffset = offset(0, 1, sizes = argmax.size())
val outputOffset = offset(0, 1, sizes = output.size())
val roisOffset = offset(1, sizes = rois.size())
var n = 0
val dataSize = data.size()
if (classTag[T] == classTag[Double]) {
val inputData = data.storage().array().asInstanceOf[Array[Double]]
val argmaxData = argmax.storage().array().asInstanceOf[Array[Double]]
val outputData = output.storage().array().asInstanceOf[Array[Double]]
val roisDouble = rois.asInstanceOf[Tensor[Double]]
while (n < rois.size(1)) {
poolOneRoiDouble(n, roisDouble(n + 1),
inputData, dataSize, dataOffset,
argmaxData, argmaxOffset,
outputData, outputOffset,
roisOffset, ev.toType[Double](spatialScale))
n += 1
}
} else if (classTag[T] == classTag[Float]) {
val inputData = data.storage().array().asInstanceOf[Array[Float]]
val argmaxData = argmax.storage().array().asInstanceOf[Array[Float]]
val outputData = output.storage().array().asInstanceOf[Array[Float]]
val roisFloat = rois.asInstanceOf[Tensor[Float]]
while (n < rois.size(1)) {
poolOneRoiFloat(n, roisFloat(n + 1),
inputData, dataSize, dataOffset,
argmaxData, argmaxOffset,
outputData, outputOffset,
roisOffset, ev.toType[Float](spatialScale))
n += 1
}
} else {
throw new IllegalArgumentException("currently only Double and Float types are supported")
}
output
}
private def scaleRoiFloat(roi: Tensor[Float], ind: Int, spatialScale: Float): Int = {
Math.round(roi.valueAt(ind) * spatialScale)
}
private def poolOneRoiFloat(n: Int, roi: Tensor[Float],
inputData: Array[Float], dataSize: Array[Int], dataOffset: Int,
argmaxData: Array[Float], argmaxOffset: Int,
outputData: Array[Float], outputOffset: Int, roisOffset: Int,
spatialScale: Float): Unit = {
val roiBatchInd = roi.valueAt(1).toInt
val roiStartW = scaleRoiFloat(roi, 2, spatialScale)
val roiStartH = scaleRoiFloat(roi, 3, spatialScale)
require(roiBatchInd >= 0 && dataSize(0) > roiBatchInd)
val binSizeH = Math.max(scaleRoiFloat(roi, 5, spatialScale) - roiStartH + 1, 1f) / pooledH
val binSizeW = Math.max(scaleRoiFloat(roi, 4, spatialScale) - roiStartW + 1, 1f) / pooledW
var batchDataIndex = offset(roiBatchInd, sizes = dataSize)
var c = 0
while (c < dataSize(1)) {
var ph = 0
val outputDataIndex = outputOffset * (n * dataSize(1) + c)
val argmaxIndex = argmaxOffset * (n * dataSize(1) + c)
while (ph < pooledH) {
var pw = 0
while (pw < pooledW) {
// Compute pooling region for this output unit:
// start (included) = floor(ph * roi_height / pooled_height_)
// end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
val hstart = Math.min(Math.max(Math.floor(ph * binSizeH).toInt + roiStartH, 0),
dataSize(2))
val hend = Math.min(Math.max(Math.ceil((ph + 1) * binSizeH).toInt + roiStartH, 0),
dataSize(2))
val wstart = Math.min(Math.max(Math.floor(pw * binSizeW).toInt + roiStartW, 0),
dataSize(3))
val wend = Math.min(Math.max(Math.ceil((pw + 1) * binSizeW).toInt + roiStartW, 0),
dataSize(3))
val poolIndex = ph * pooledW + pw
if ((hend <= hstart) || (wend <= wstart)) {
outputData(outputDataIndex + poolIndex) = 0
argmaxData(argmaxIndex + poolIndex) = -1
} else {
var h = hstart
while (h < hend) {
var w = wstart
val hi = h * dataSize(3)
while (w < wend) {
val index = hi + w
if (inputData(batchDataIndex + index) >
outputData(outputDataIndex + poolIndex)) {
outputData(outputDataIndex + poolIndex) = inputData(batchDataIndex + index)
argmaxData(argmaxIndex + poolIndex) = index
}
w += 1
}
h += 1
}
}
pw += 1
}
ph += 1
}
// Increment all data pointers by one channel
c += 1
batchDataIndex += dataOffset
}
}
private def scaleRoiDouble(roi: Tensor[Double], ind: Int, spatialScale: Double): Int = {
Math.round(roi.valueAt(ind) * spatialScale).toInt
}
private def poolOneRoiDouble(n: Int, roi: Tensor[Double],
inputData: Array[Double], dataSize: Array[Int], dataOffset: Int,
argmaxData: Array[Double], argmaxOffset: Int,
outputData: Array[Double], outputOffset: Int, roisOffset: Int,
spatialScale: Double): Unit = {
val roiBatchInd = roi.valueAt(1).toInt
val roiStartW = scaleRoiDouble(roi, 2, spatialScale)
val roiStartH = scaleRoiDouble(roi, 3, spatialScale)
require(roiBatchInd >= 0 && dataSize(0) > roiBatchInd)
val binSizeH = Math.max(scaleRoiDouble(roi, 5, spatialScale) - roiStartH + 1, 1f) / pooledH
val binSizeW = Math.max(scaleRoiDouble(roi, 4, spatialScale) - roiStartW + 1, 1f) / pooledW
var batchDataIndex = offset(roiBatchInd, sizes = dataSize)
var c = 0
while (c < dataSize(1)) {
var ph = 0
val outputDataIndex = outputOffset * (n * dataSize(1) + c)
val argmaxIndex = argmaxOffset * (n * dataSize(1) + c)
while (ph < pooledH) {
var pw = 0
while (pw < pooledW) {
// Compute pooling region for this output unit:
// start (included) = floor(ph * roi_height / pooled_height_)
// end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
val hstart = Math.min(Math.max(Math.floor(ph * binSizeH).toInt + roiStartH, 0),
dataSize(2))
val hend = Math.min(Math.max(Math.ceil((ph + 1) * binSizeH).toInt + roiStartH, 0),
dataSize(2))
val wstart = Math.min(Math.max(Math.floor(pw * binSizeW).toInt + roiStartW, 0),
dataSize(3))
val wend = Math.min(Math.max(Math.ceil((pw + 1) * binSizeW).toInt + roiStartW, 0),
dataSize(3))
val poolIndex = ph * pooledW + pw
if ((hend <= hstart) || (wend <= wstart)) {
outputData(outputDataIndex + poolIndex) = 0
argmaxData(argmaxIndex + poolIndex) = -1
} else {
var h = hstart
while (h < hend) {
var w = wstart
val hi = h * dataSize(3)
while (w < wend) {
val index = hi + w
if (inputData(batchDataIndex + index) >
outputData(outputDataIndex + poolIndex)) {
outputData(outputDataIndex + poolIndex) = inputData(batchDataIndex + index)
argmaxData(argmaxIndex + poolIndex) = index
}
w += 1
}
h += 1
}
}
pw += 1
}
ph += 1
}
// Increment all data pointers by one channel
c += 1
batchDataIndex += dataOffset
}
}
/**
* get the data offset given n, c, h, w
* @param n batch indice
* @param c channel indice
* @param h height indice
* @param w width indice
* @param sizes tensor size
* @return array offset
*/
private def offset(n: Int, c: Int = 0, h: Int = 0, w: Int = 0, sizes: Array[Int]): Int = {
require(sizes.length == 2 || sizes.length >= 4)
if (sizes.length == 2) ((n * sizes(1) + c) + h) + w
else ((n * sizes(1) + c) * sizes(2) + h) * sizes(3) + w
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
val numRois = output.size(1)
if (classTag[T] == classTag[Double]) {
val data = input[Tensor[Double]](1)
val roisData = input[Tensor[Double]](2).storage().array()
val argmaxData = argmax.storage().array().asInstanceOf[Array[Double]]
val gradInputData = gradInputTensor.resizeAs(data).zero()
.storage().array().asInstanceOf[Array[Double]]
val gradOutputData = gradOutput.storage().array().asInstanceOf[Array[Double]]
roiPoolingBackwardDouble(roisData, numRois, data,
argmaxData, gradInputData, gradOutputData)
} else if (classTag[T] == classTag[Float]) {
val data = input[Tensor[Float]](1)
val roisData = input[Tensor[Float]](2).storage().array()
val argmaxData = argmax.storage().array().asInstanceOf[Array[Float]]
val gradInputData = gradInputTensor.resizeAs(data).zero()
.storage().array().asInstanceOf[Array[Float]]
val gradOutputData = gradOutput.storage().array().asInstanceOf[Array[Float]]
roiPoolingBackwardFloat(roisData, numRois, data,
argmaxData, gradInputData, gradOutputData)
} else {
throw new IllegalArgumentException("currently only Double and Float types are supported")
}
gradInput
}
private def roiPoolingBackwardFloat(roisData: Array[Float], numRois: Int, data: Tensor[Float],
argmaxData: Array[Float], gradInputData: Array[Float], gradOutputData: Array[Float]): Unit = {
var roiN = 0
var c = 0
var ph = 0
var pw = 0
// Accumulate gradient over all ROIs
while (roiN < numRois) {
val roiBatchInd = roisData(roiN * 5).toInt
// Accumulate gradients over each bin in this ROI
c = 0
while (c < data.size(2)) {
ph = 0
while (ph < pooledH) {
pw = 0
while (pw < pooledW) {
val outputOffset = ((roiN * data.size(2) + c) * pooledH + ph) * pooledW + pw
val argmaxIndex = argmaxData(outputOffset)
if (argmaxIndex >= 0) {
val inputOffset = (roiBatchInd * data.size(2)
+ c) * data.size(3) * data.size(4) + argmaxIndex.toInt
gradInputData(inputOffset) = gradInputData(inputOffset) + gradOutputData(outputOffset)
}
pw += 1
}
ph += 1
}
c += 1
}
roiN += 1
}
}
private def roiPoolingBackwardDouble(roisData: Array[Double], numRois: Int, data: Tensor[Double],
argmaxData: Array[Double], gradInputData: Array[Double],
gradOutputData: Array[Double]): Unit = {
var roiN = 0
var c = 0
var ph = 0
var pw = 0
// Accumulate gradient over all ROIs
while (roiN < numRois) {
val roiBatchInd = roisData(roiN * 5).toInt
// Accumulate gradients over each bin in this ROI
c = 0
while (c < data.size(2)) {
ph = 0
while (ph < pooledH) {
pw = 0
while (pw < pooledW) {
val outputOffset = ((roiN * data.size(2) + c) * pooledH + ph) * pooledW + pw
val argmaxIndex = argmaxData(outputOffset)
if (argmaxIndex >= 0) {
val inputOffset = (roiBatchInd * data.size(2)
+ c) * data.size(3) * data.size(4) + argmaxIndex.toInt
gradInputData(inputOffset) = gradInputData(inputOffset) + gradOutputData(outputOffset)
}
pw += 1
}
ph += 1
}
c += 1
}
roiN += 1
}
}
override def toString: String = "nn.RoiPooling"
override def clearState(): this.type = {
super.clearState()
argmax.set()
gradInputTensor.set()
this
}
}
object RoiPooling {
def apply[@specialized(Float, Double) T: ClassTag](
pooled_w: Int, pooled_h: Int, spatial_scale: T)(implicit ev: TensorNumeric[T]): RoiPooling[T] =
new RoiPooling[T](pooled_w, pooled_h, spatial_scale)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy