com.intel.analytics.bigdl.nn.SReLU.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.utils.{T, Table}
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.reflect.ClassTag
/**
* S-shaped Rectified Linear Unit.
* It follows:
* `f(x) = t^r + a^r(x - t^r) for x >= t^r`,
* `f(x) = x for t^r > x > t^l`,
* `f(x) = t^l + a^l(x - t^l) for x <= t^l`.
*
* [Deep Learning with S-shaped Rectified Linear Activation Units](http://arxiv.org/abs/1512.07030)
*
* @param shape shape for tleft, aleft, tright, aright.
* E.g. for a 4-D input, the shape is the last 3-D
* @param sharedAxes the axes along which to share learnable parameters
* for the activation function.
* For example, if the incoming feature maps are from a 2D convolution
* with output shape `(batch, height, width, channels)`,
* and you wish to share parameters across space
* so that each filter only has one set of parameters,
* set `shared_axes=[1, 2]`.
*/
@SerialVersionUID(7173457290010080259L)
class SReLU[T: ClassTag](val shape: Array[Int], val sharedAxes: Array[Int] = null)(
implicit ev: TensorNumeric[T]) extends TensorModule[T]
with Initializable {
import SReLU._
val weightsLen = 4
val weights: Array[Tensor[T]] = Array.fill[Tensor[T]](4)(Tensor[T]())
val gradWeights: Array[Tensor[T]] = Array.fill[Tensor[T]](4)(Tensor[T]())
val weightsInit: Array[InitializationMethod] = Array(Zeros, Xavier, Xavier, Ones)
// this attribute for computing the offset in weight because of sharedAxes
private var indexes: Array[Int] = null
init(shape).reset()
private def init(shape: Array[Int]): this.type = {
if (sharedAxes != null) {
var i = 0
while (i < sharedAxes.length) {
shape(sharedAxes(i) - 1) = 1
i += 1
}
}
val variableFormat = shape.length match {
case 2 => VariableFormat.IN_OUT
case 4 => VariableFormat.OUT_IN_KW_KH
case 5 => VariableFormat.OUT_IN_KT_KH_KW
case _ => VariableFormat.Default
}
var i = 0
while (i < weightsLen) {
weights(i).resize(shape)
weightsInit(i).init(weights(i), variableFormat)
gradWeights(i).resize(shape)
gradWeights(i).resizeAs(weights(i)).zero()
i += 1
}
// ensure the the right part is always to the right of the left
weights(tRight).abs().add(weights(tLeft))
this
}
override def reset(): Unit = {
for ((initMethod, weight) <- weightsInit.zip(weights)) {
initMethod.init(weight)
}
zeroGradParameters()
}
private def getIndex(indexes: Array[Int], stride: Array[Int], ndim: Int, offset: Int): Unit = {
var i = 0
var tmp = offset
while (i < ndim) {
indexes(i) = tmp / stride(i) + 1 // 1 based
tmp = tmp % stride(i)
i += 1
}
// set back the shared axes
if (sharedAxes != null) {
i = 0
while (i < sharedAxes.length) {
indexes(sharedAxes(i) - 1) = 1
i += 1
}
}
}
private def setValue(w: Array[Tensor[T]], i: Int, t: Int, v: T): Unit = {
w(t).storage().array()(w(t).storageOffset() - 1 + i) = ev.plus(
w(t).storage().array()(w(t).storageOffset() - 1 + i),
v)
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.isContiguous(), s"the input of SReLU must be contiguous")
// ensure the the right part is always to the right of the left
weights(tRight).abs().add(weights(tLeft))
output.resizeAs(input)
// temp buf for indexes
if (indexes == null) {
indexes = new Array[Int](weights(tRight).nDimension())
}
var batch = 0
while (batch < input.size(1)) {
val sliceInput = input.select(1, batch + 1)
val sliceOutput = output.select(1, batch + 1)
val xArr = sliceInput.storage().array()
val yArr = sliceOutput.storage().array()
val yOffset = sliceOutput.storageOffset() - 1
val xOffset = sliceInput.storageOffset() - 1
var i = 0
while (i < sliceInput.nElement()) {
getIndex(indexes, sliceInput.stride(), sliceInput.nDimension(), i)
val tr = weights(tRight).apply(indexes)
val ar = weights(aRight).apply(indexes)
val tl = weights(tLeft).apply(indexes)
val al = weights(aLeft).apply(indexes)
val x = xArr(xOffset + i)
yArr(yOffset + i) = if (ev.isGreaterEq(x, tr)) {
// right: x_i >= t_i^r
ev.plus(tr, ev.times(ar, ev.minus(x, tr)))
} else if (ev.isGreaterEq(tl, x)) {
// left: x_i <= t_i^l
ev.plus(tl, ev.times(al, ev.minus(x, tl)))
} else {
// else x_i = x_i
x
}
i += 1
}
batch += 1
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isContiguous(), s"the input of SReLU must be contiguous")
require(gradOutput.isContiguous(), s"the gradOutput of SReLU must be contiguous")
gradInput.resizeAs(input)
var batch = 0
while (batch < gradInput.size(1)) {
val sliceInput = input.select(1, batch + 1)
val sliceGradInput = gradInput.select(1, batch + 1)
val sliceGradOutput = gradOutput.select(1, batch + 1)
val xArr = sliceInput.storage().array()
var xOffset = sliceInput.storageOffset() - 1
val yArr = sliceGradInput.storage().array()
var yOffset = sliceGradInput.storageOffset() - 1
val zArr = sliceGradOutput.storage().array()
var zOffset = sliceGradOutput.storageOffset() - 1
var i = 0
while (i < sliceGradInput.nElement()) {
getIndex(indexes, sliceInput.stride(), sliceInput.nDimension(), i)
val tr = weights(tRight).apply(indexes)
val ar = weights(aRight).apply(indexes)
val tl = weights(tLeft).apply(indexes)
val al = weights(aLeft).apply(indexes)
val x = xArr(xOffset + i)
val t = if (ev.isGreaterEq(x, tr)) {
ev.times(ar, zArr(zOffset + i))
} else if (ev.isGreaterEq(tl, x)) {
ev.times(al, zArr(zOffset + i))
} else {
zArr(zOffset + i)
}
yArr(yOffset + i) = ev.plus(yArr(yOffset + i), t)
i += 1
}
batch += 1
}
gradInput
}
override def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit = {
var batch = 0
while (batch < gradInput.size(1)) {
val sliceInput = input.select(1, batch + 1)
val sliceGradOutput = gradOutput.select(1, batch + 1)
val xArr = sliceInput.storage().array()
val xOffset = sliceInput.storageOffset() - 1
val zArr = sliceGradOutput.storage().array()
val zOffset = sliceGradOutput.storageOffset() - 1
var i = 0
while (i < sliceInput.nElement()) {
getIndex(indexes, sliceInput.stride(), sliceInput.nDimension(), i)
// weight offset
var wOffset = 0
var j = 0
while (j < indexes.length) {
// because indexes is 1 based, so we should minus 1 here
wOffset += (indexes(j) - 1) * gradWeights(tLeft).stride(j + 1)
j += 1
}
val tr = weights(tRight).apply(indexes)
val ar = weights(aRight).apply(indexes)
val tl = weights(tLeft).apply(indexes)
val al = weights(aLeft).apply(indexes)
val x = xArr(xOffset + i)
if (ev.isGreaterEq(x, tr)) {
setValue(gradWeights, wOffset, tRight, ev.times(ev.minus(ev.fromType(1), ar),
zArr(zOffset + i)))
setValue(gradWeights, wOffset, aRight, ev.times(ev.minus(x, tr),
zArr(zOffset + i)))
} else {
setValue(gradWeights, wOffset, tRight, ev.fromType(0))
setValue(gradWeights, wOffset, aRight, ev.fromType(0))
}
if (ev.isGreaterEq(tl, x)) {
setValue(gradWeights, wOffset, tLeft, ev.times(ev.minus(ev.fromType(1), al),
zArr(zOffset + i)))
setValue(gradWeights, wOffset, aLeft, ev.times(ev.minus(xArr(xOffset + i), tl),
zArr(zOffset + i)))
} else {
setValue(gradWeights, wOffset, tLeft, ev.fromType(0))
setValue(gradWeights, wOffset, aLeft, ev.fromType(0))
}
i += 1
}
batch += 1
}
}
override def getParametersTable(): Table = {
T(getName() -> T(
"tLeft" -> weights(tLeft),
"aLeft" -> weights(aLeft),
"tRight" -> weights(tRight),
"aRight" -> weights(aRight)))
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(weights, gradWeights)
}
override def setInitMethod(initMethods: Array[InitializationMethod]): this.type = {
for (i <- Array(tLeft, aLeft, tRight, aRight)) {
if (initMethods(i) != null) {
weightsInit(i) = initMethods(i)
}
}
reset()
this
}
override def setInitMethod(weightInitMethod: InitializationMethod = null,
biasInitMethod: InitializationMethod = null): this.type = {
throw new UnsupportedOperationException(
s"SReLU should call setInitMethod(initMethods: Array[InitializationMethod])")
}
}
object SReLU extends ModuleSerializable {
def apply[T: ClassTag](shape: Array[Int], shareAxes: Array[Int] = null)(
implicit ev: TensorNumeric[T]): SReLU[T] = {
new SReLU[T](shape, shareAxes)
}
val (tLeft, aLeft, tRight, aRight) = (0, 1, 2, 3)
override def doLoadModule[T: ClassTag](context: DeserializeContext)
(implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = {
val attrMap = context.bigdlModule.getAttrMap
val srelu = super.doLoadModule(context).asInstanceOf[SReLU[T]]
srelu.weights(tLeft) = DataConverter.
getAttributeValue(context, attrMap.get("tLeft")).
asInstanceOf[Tensor[T]]
srelu.weights(aLeft) = DataConverter.
getAttributeValue(context, attrMap.get("aLeft")).
asInstanceOf[Tensor[T]]
srelu.weights(tRight) = DataConverter.
getAttributeValue(context, attrMap.get("tRight")).
asInstanceOf[Tensor[T]]
srelu.weights(aRight) = DataConverter.
getAttributeValue(context, attrMap.get("aRight")).
asInstanceOf[Tensor[T]]
srelu
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
sreluBuilder : BigDLModule.Builder)
(implicit ev: TensorNumeric[T]) : Unit = {
super.doSerializeModule(context, sreluBuilder)
val srelu = context.moduleData.module.asInstanceOf[SReLU[T]]
val runningMeanBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, runningMeanBuilder,
srelu.weights(tLeft), ModuleSerializer.tensorType)
sreluBuilder.putAttr("tLeft", runningMeanBuilder.build)
val runningVarBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, runningVarBuilder,
srelu.weights(aLeft), ModuleSerializer.tensorType)
sreluBuilder.putAttr("aLeft", runningVarBuilder.build)
val saveMeanBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, saveMeanBuilder,
srelu.weights(tRight), ModuleSerializer.tensorType)
sreluBuilder.putAttr("tRight", saveMeanBuilder.build)
val saveStdBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, saveStdBuilder,
srelu.weights(aRight), ModuleSerializer.tensorType)
sreluBuilder.putAttr("aRight", saveStdBuilder.build)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy