com.intel.analytics.bigdl.nn.Scale.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.utils.{Shape, T, Table}
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.reflect.ClassTag
/**
* Scale is the combination of cmul and cadd
* Computes the elementwise product of input and weight, with the shape of the weight "expand" to
* match the shape of the input.
* Similarly, perform a expand cdd bias and perform an elementwise add
* @param size size of weight and bias
* @tparam T Numeric type. Only support float/double now
*/
class Scale[T: ClassTag](val size: Array[Int])
(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[T], Tensor[T], T] {
private[bigdl] var cmul = new CMul[T](size)
private[bigdl] var cadd = new CAdd[T](size)
/**
* Computes the output using the current parameter set of the class and input. This function
* returns the result which is stored in the output field.
* @param input
* @return
*/
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output = cadd.forward(cmul.forward(input))
output
}
/**
* Computing the gradient of the module with respect to its own input. This is returned in
* gradInput. Also, the gradInput state variable is updated accordingly.
* @param input
* @param gradOutput
* @return
*/
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
this.gradInput = cmul.backward(cadd.output, cadd.backward(input, gradOutput))
gradInput
}
/**
* This function returns two arrays. One for the weights and the other the gradients
* Custom modules should override this function if they have parameters
* @return (Array of weights, Array of grad)
*/
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(Array(cmul.parameters()._1(0), cadd.parameters()._1(0)),
Array(cmul.parameters()._2(0), cadd.parameters()._2(0)))
}
override def toString: String = "nn.Scale"
override def computeOutputShape(inputShape: Shape): Shape = {
val outputShape = cmul.computeOutputShape(inputShape)
cadd.computeOutputShape(outputShape)
}
}
object Scale extends ModuleSerializable {
def apply[@specialized(Float, Double) T: ClassTag](size: Array[Int])
(implicit ev: TensorNumeric[T]): Scale[T] = new Scale[T](size)
override def doLoadModule[T: ClassTag](context : DeserializeContext)
(implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = {
val scale = super.doLoadModule(context).asInstanceOf[Scale[T]]
val attrMap = context.bigdlModule.getAttrMap
val cmul = attrMap.get("cmul")
scale.cmul = DataConverter.getAttributeValue(context, cmul).asInstanceOf[CMul[T]]
val cadd = attrMap.get("cadd")
scale.cadd = DataConverter.getAttributeValue(context, cadd).asInstanceOf[CAdd[T]]
scale
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
scaleBuilder : BigDLModule.Builder)
(implicit ev: TensorNumeric[T]) : Unit = {
val scale = context.moduleData.module.asInstanceOf[Scale[T]]
super.doSerializeModule(context, scaleBuilder)
val cmulBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, cmulBuilder,
scale.cmul, ModuleSerializer.abstractModuleType)
scaleBuilder.putAttr("cmul", cmulBuilder.build)
val caddBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, caddBuilder,
scale.cadd, ModuleSerializer.abstractModuleType)
scaleBuilder.putAttr("cadd", caddBuilder.build)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy