com.intel.analytics.bigdl.nn.SmoothL1Criterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Creates a criterion that can be thought of as a smooth version of the AbsCriterion.
* It uses a squared term if the absolute element-wise error falls below 1.
* It is less sensitive to outliers than the MSECriterion and in some
* cases prevents exploding gradients (e.g. see "Fast R-CNN" paper by Ross Girshick).
*
* | 0.5 * (x_i - y_i)^2^, if |x_i - y_i| < 1
* loss(x, y) = 1/n \sum |
* | |x_i - y_i| - 0.5, otherwise
*
* If x and y are d-dimensional Tensors with a total of n elements,
* the sum operation still operates over all the elements, and divides by n.
* The division by n can be avoided if one sets the internal variable sizeAverage to false
* @param sizeAverage whether to average the loss
*/
@SerialVersionUID(3385326223989333522L)
class SmoothL1Criterion[@specialized(Float, Double) T: ClassTag](sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T])
extends TensorCriterion[T] {
val buffer: Tensor[T] = Tensor[T]()
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
require(input.nElement() == target.nElement(),
"input and target size should be equal" +
s"input size ${input.nElement()} targetsize ${target.nElement()}")
buffer.resizeAs(input).copy(input)
buffer.add(ev.fromType(-1), target).abs()
val data = buffer.storage().array()
val offset = buffer.storageOffset() - 1
var i = 0
while (i < buffer.nElement()) {
if (ev.isGreater(ev.fromType(1), data(i + offset))) {
data(i + offset) = ev.times(ev.fromType[Double](0.5),
ev.times(data(i + offset), data(i + offset)))
} else {
data(i + offset) = ev.minus(data(i + offset), ev.fromType[Double](0.5))
}
i += 1
}
var sum = buffer.sum()
if (sizeAverage) {
sum = ev.divide(sum, ev.fromType(input.nElement()))
}
output = sum
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
require(input.nElement() == target.nElement())
val norm = ev.fromType(if (sizeAverage) 1.0 / input.nElement() else 1.0)
gradInput.resizeAs(input).copy(input)
gradInput.add(ev.fromType(-1), target)
val data = gradInput.storage().array()
val offset = gradInput.storageOffset() - 1
var i = 0
while (i < gradInput.nElement()) {
if (ev.isGreater(ev.fromType(-1), data(i + offset))) {
data(i + offset) = ev.negative(norm)
}
else if (ev.isGreater(data(i + offset), ev.one)) {
data(i + offset) = norm
}
else {
data(i + offset) = ev.times(norm, data(i + offset))
}
i += 1
}
gradInput
}
def clearState() : this.type = {
buffer.set()
this
}
}
object SmoothL1Criterion {
def apply[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : SmoothL1Criterion[T] = {
new SmoothL1Criterion[T](sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy