com.intel.analytics.bigdl.nn.SoftPlus.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{IdentityOutputShape, TensorModule}
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, Tensor, TensorFunc4, TensorFunc6}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Apply the SoftPlus function to an n-dimensional input tensor.
*
* SoftPlus function: f_i(x) = 1/beta * log(1 + exp(beta * x_i))
*
* @param beta Controls sharpness of transfer function
*/
@SerialVersionUID(- 6938956677043843473L)
class SoftPlus[T: ClassTag](
val beta: Double = 1.0
)( implicit ev: TensorNumeric[T])
extends TensorModule[T] {
// Avoid floating point issues with exp(x), x>20
private val threshold = ev.fromType[Double](20.0)
private val betaT = ev.fromType[Double](beta)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
// f(x) = 1/beta * log(1 + exp(beta * x))
val func = new TensorFunc4[T] {
override def apply (data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = if (ev.isGreater(ev.times(data2(offset2), betaT), threshold)) {
data2(offset2)
} else {
ev.divide(ev.log1p(ev.exp(ev.times(data2(offset2), betaT))), betaT)
}
}
}
DenseTensorApply.apply2[T](output, input, func)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input)
// d/dx[log(1+exp(k*x))/k] = exp(kx) / (exp(kx) + 1)
// SINCE
// y = (1/k)*log(1+exp(k*x)) --> x = (1/k)*log(exp(k*y)-1)
// THEREFORE:
// d/dx(f(x)) = (exp(k*y) - 1) / exp(k*y)
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
val z = ev.exp(ev.times(data3(offset3), betaT))
data1(offset1) = if (ev.isGreater(ev.times(data3(offset3), betaT), threshold)) {
data2(offset2)
} else {
ev.times(data2(offset2), ev.divide(ev.minus(z, ev.fromType[Int](1)), z))
}
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, output, func)
gradInput
}
}
object SoftPlus {
def apply[@specialized(Float, Double) T: ClassTag](
beta: Double = 1.0)
(implicit ev: TensorNumeric[T]) : SoftPlus[T] = {
new SoftPlus[T](beta)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy