com.intel.analytics.bigdl.nn.SoftmaxWithCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.NormMode.NormMode
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Computes the multinomial logistic loss for a one-of-many classification task,
* passing real-valued predictions through a softmax to get a probability distribution over classes.
* It should be preferred over separate SoftmaxLayer + MultinomialLogisticLossLayer
* as its gradient computation is more numerically stable.
* @param ignoreLabel (optional) Specify a label value that
* should be ignored when computing the loss.
* @param normalizeMode How to normalize the output loss.
*/
class SoftmaxWithCriterion[@specialized(Float, Double) T: ClassTag](ignoreLabel: Option[Int] = None,
normalizeMode: NormMode = NormMode.VALID)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
@transient var softmax: SoftMax[T] = _
@transient var prob: Tensor[T] = _
@transient var outerNum = 0 // batchsize
@transient var innerNum = 1
@transient var nClasses = 2
/**
* compute the loss
* @param input input.size(1) is batch num
* input.size(2) is the softmaxAxis, number of classes as usual
* @return
*/
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
outerNum = input.size(1)
innerNum = 1
var i = 3
while (i <= input.dim()) {
innerNum = innerNum * input.size(i)
i += 1
}
nClasses = input.size(2)
if (softmax == null) {
softmax = new SoftMax()
}
prob = softmax.forward(input)
val probData = prob.storage().array()
val labelData = target.storage().array()
var loss = ev.fromType(0)
val dim = prob.nElement() / outerNum
var count = 0
i = 0
while (i < outerNum) {
var j = 0
while (j < innerNum) {
val curTarget = ev.toType[Int](labelData(i * innerNum + j))
if (ignoreLabel.isEmpty || ignoreLabel.get != curTarget) {
assert(curTarget >= 1 && curTarget <= nClasses,
s"curTarget $curTarget is out of range 1 to ${ nClasses } ")
// avoid log(0)
val prob = ev.max(probData(i * dim + (curTarget - 1) * innerNum + j),
ev.fromType(Double.MinPositiveValue))
loss = ev.minus(loss, ev.log(prob))
count = count + 1
}
j += 1
}
i += 1
}
output = ev.divide(loss, getNormalizer(normalizeMode, count))
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(prob).copy(prob)
val labelData = target.storage().array()
val dim = prob.nElement() / outerNum
val gradData = gradInput.storage().array()
var count = 0
var i = 0
while (i < outerNum) {
var j = 0
while (j < innerNum) {
val curTarget = ev.toType[Int](labelData(i * innerNum + j))
if (ignoreLabel.isEmpty || ignoreLabel.get != curTarget) {
gradData(i * dim + (curTarget - 1) * innerNum + j) =
ev.minus(gradData(i * dim + (curTarget - 1) * innerNum + j), ev.fromType(1))
count = count + 1
} else {
var c = 0
while (c < nClasses) {
gradData(i * dim + c * innerNum + j) = ev.fromType(0)
c += 1
}
}
j += 1
}
i += 1
}
val lossWeight = ev.divide(ev.fromType(1), getNormalizer(normalizeMode, count))
i = 0
while (i < gradData.length) {
gradData(i) = ev.times(gradData(i), lossWeight)
i += 1
}
gradInput
}
/**
* Read the normalization mode parameter and compute the normalizer based on the input size.
* If normalizeMode is VALID, the count of valid outputs will be read from validCount,
* unless it is -1 in which case all outputs are assumed to be valid.
*/
def getNormalizer(normalizeMode: NormMode, validCount: Int): T = {
def normalizer = {
normalizeMode match {
case NormMode.FULL => ev.fromType(outerNum * innerNum)
case NormMode.VALID =>
if (validCount == -1) {
ev.fromType(outerNum * innerNum)
}
else {
ev.fromType(validCount)
}
case NormMode.BATCH_SIZE => ev.fromType(outerNum)
case NormMode.NONE => ev.fromType(1)
case _ => throw new IllegalArgumentException("Unknown normalization mode")
}
}
ev.max(ev.fromType(1), normalizer)
}
}
object NormMode extends Enumeration {
type NormMode = Value
val FULL, VALID, BATCH_SIZE, NONE = Value
}
object SoftmaxWithCriterion {
def apply[@specialized(Float, Double) T: ClassTag](ignoreLabel: Option[Int] = None,
normalizeMode: NormMode = NormMode.VALID)
(implicit ev: TensorNumeric[T]): SoftmaxWithCriterion[T] =
new SoftmaxWithCriterion[T](ignoreLabel, normalizeMode)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy