com.intel.analytics.bigdl.nn.SpatialAveragePooling.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import java.util
import com.intel.analytics.bigdl.nn.abstractnn.{DataFormat, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future}
import scala.reflect._
import com.intel.analytics.bigdl.utils.Engine
/**
* Applies 2D average-pooling operation in kWxkH regions by step size dWxdH steps.
* The number of output features is equal to the number of input planes.
*
* When padW and padH are both -1, we use a padding algorithm similar to the "SAME"
* padding of tensorflow. That is
*
* outHeight = Math.ceil(inHeight.toFloat/strideH.toFloat)
* outWidth = Math.ceil(inWidth.toFloat/strideW.toFloat)
*
* padAlongHeight = Math.max(0, (outHeight - 1) * strideH + kernelH - inHeight)
* padAlongWidth = Math.max(0, (outWidth - 1) * strideW + kernelW - inWidth)
*
* padTop = padAlongHeight / 2
* padLeft = padAlongWidth / 2
*
* @param kW kernel width
* @param kH kernel height
* @param dW step width
* @param dH step height
* @param padW padding width
* @param padH padding height
* @param globalPooling If globalPooling then it will pool over the size of the input by doing
* kH = input->height and kW = input->width
* @param ceilMode whether the output size is to be ceiled or floored
* @param countIncludePad whether to include padding when dividing the
* number of elements in pooling region
* @param divide whether to do the averaging
* @param format DataFormat.NCHW or DataFormat.NHWC, indicating the input
* data format
*/
@SerialVersionUID(4533142511857387857L)
class SpatialAveragePooling[T: ClassTag](
var kW: Int,
var kH: Int,
val dW: Int = 1,
val dH: Int = 1,
val padW: Int = 0,
val padH: Int = 0,
val globalPooling: Boolean = false,
var ceilMode: Boolean = false,
private var countIncludePad: Boolean = true,
private var divide: Boolean = true,
val format: DataFormat = DataFormat.NCHW
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
@transient
private var results: Array[Future[Unit]] = null
/**
* set ceil mode
* @return this
*/
def ceil(): SpatialAveragePooling[T] = {
ceilMode = true
this
}
/**
* set floor mode
* @return this
*/
def floor(): SpatialAveragePooling[T] = {
ceilMode = false
this
}
/**
* set countIncludePad to true
* @return this
*/
def setCountIncludePad(): SpatialAveragePooling[T] = {
countIncludePad = true
this
}
/**
* set countIncludePad to false
* @return this
*/
def setCountExcludePad(): SpatialAveragePooling[T] = {
countIncludePad = false
this
}
private def updateOutputFrameDouble(input: Tensor[Double], output: Tensor[Double],
nInputPlane: Int, inputHeight: Int, inputWidth: Int,
outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(input.isContiguous())
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val outputData = output.storage().array()
val outputOffset = output.storageOffset() - 1
var k = 0
while (k < nInputPlane) {
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
var sum = 0.0
val divideFactor = if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
sum += inputData(inputOffset + k * inputHeight * inputWidth + ky * inputWidth + kx)
kx += 1
}
ky += 1
}
outputData(outputOffset + k * outputHeight * outputWidth + yy * outputWidth + xx) =
sum / divideFactor
xx += 1
}
yy += 1
}
k += 1
}
}
private def updateOutputFrameFloat(input: Tensor[Float], output: Tensor[Float],
nInputPlane: Int, inputHeight: Int, inputWidth: Int, outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(input.isContiguous())
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val outputData = output.storage().array()
val outputOffset = output.storageOffset() - 1
var k = 0
while (k < nInputPlane) {
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
var sum = 0.0f
val divideFactor = if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
sum += inputData(inputOffset + k * inputHeight * inputWidth + ky * inputWidth + kx)
kx += 1
}
ky += 1
}
outputData(outputOffset + k * outputHeight * outputWidth + yy * outputWidth + xx) =
sum / divideFactor
xx += 1
}
yy += 1
}
k += 1
}
}
private def updateOutputFrameDoubleNHWC(
input: Tensor[Double], output: Tensor[Double],
nInputPlane: Int, inputHeight: Int, inputWidth: Int, outputHeight: Int,
outputWidth: Int, kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(input.isContiguous())
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val outputData = output.storage().array()
val outputOffset = output.storageOffset() - 1
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val currOutLocStart = outputOffset + (yy * outputWidth + xx) * nInputPlane
val currOutLocEnd = currOutLocStart + nInputPlane
util.Arrays.fill(outputData, currOutLocStart, currOutLocEnd, 0.0)
val divideFactor = if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
var y = hStart
while (y < hEnd) {
var x = wStart
while (x < wEnd) {
// k, y, x input indexers
val tcntr = y *inputWidth + x
val currInLocStart = inputOffset + tcntr * nInputPlane
var n = 0
while (n < nInputPlane) {
val value = inputData(currInLocStart + n)
outputData(currOutLocStart + n) += value
n = n + 1
}
x += 1
}
y += 1
}
var n = 0
while (n < nInputPlane) {
outputData(currOutLocStart + n) /= divideFactor
n = n + 1
}
xx += 1
}
yy += 1
}
}
private def updateOutputFrameFloatNHWC(
input: Tensor[Float], output: Tensor[Float],
nInputPlane: Int, inputHeight: Int, inputWidth: Int, outputHeight: Int,
outputWidth: Int, kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(input.isContiguous())
val inputData = input.storage().array()
val inputOffset = input.storageOffset() - 1
val outputData = output.storage().array()
val outputOffset = output.storageOffset() - 1
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val currOutLocStart = outputOffset + (yy * outputWidth + xx) * nInputPlane
val currOutLocEnd = currOutLocStart + nInputPlane
util.Arrays.fill(outputData, currOutLocStart, currOutLocEnd, 0.0f)
val divideFactor = if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
var y = hStart
while (y < hEnd) {
var x = wStart
while (x < wEnd) {
// k, y, x input indexers
val tcntr = y *inputWidth + x
val currInLocStart = inputOffset + tcntr * nInputPlane
var n = 0
while (n < nInputPlane) {
val value = inputData(currInLocStart + n)
outputData(currOutLocStart + n) += value
n = n + 1
}
x += 1
}
y += 1
}
var n = 0
while (n < nInputPlane) {
outputData(currOutLocStart + n) /= divideFactor
n = n + 1
}
xx += 1
}
yy += 1
}
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.dim() == 3 || input.dim() == 4,
"SpatialAveragePooling: " + ErrorInfo.constrainInputAs3DOrBatch +
s"input dimension ${input.dim()}")
val (dimH, dimW, dimC) = format.getHWCDims(input.dim())
val inputHeight = input.size(dimH)
val inputWidth = input.size(dimW)
val nInputPlane = input.size(dimC)
if (globalPooling) {
kH = inputHeight
kW = inputWidth
}
val sizes =
if (padW == -1 && padH == -1) {
Utils.getSAMEOutSizeAndPadding(inputHeight, inputWidth, dH, dW, kH, kW)
} else {
Utils.getOutSizeAndPadding(inputHeight, inputWidth, dH, dW, kH, kW, padH, padW, ceilMode)
}
val padTop = sizes(0)
val padBottom = sizes(1)
val padLeft = sizes(2)
val padRight = sizes(3)
val outputHeight = sizes(4)
val outputWidth = sizes(5)
if (ceilMode && padW == 0 && (inputWidth - kW) % dW == 0) {
ceilMode = false // The ceil mode is not needed.
}
if (input.dim() == 3) {
format match {
case DataFormat.NCHW =>
output.resize(Array(nInputPlane, outputHeight, outputWidth))
if (classTag[T] == classTag[Double]) {
updateOutputFrameDouble(input.asInstanceOf[Tensor[Double]],
output.asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateOutputFrameFloat(input.asInstanceOf[Tensor[Float]],
output.asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
case DataFormat.NHWC =>
output.resize(Array(outputHeight, outputWidth, nInputPlane))
if (classTag[T] == classTag[Double]) {
updateOutputFrameDoubleNHWC(input.asInstanceOf[Tensor[Double]],
output.asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateOutputFrameFloatNHWC(input.asInstanceOf[Tensor[Float]],
output.asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
}
}
else {
val nbatch = input.size(1)
if (results == null || results.length != nbatch) {
results = new Array[Future[Unit]](nbatch)
}
format match {
case DataFormat.NCHW =>
output.resize(Array(nbatch, nInputPlane, outputHeight, outputWidth))
var i = 1
while (i <= nbatch) {
val _i = i
results(_i - 1) = Engine.model.invoke(() => {
if (classTag[T] == classTag[Double]) {
updateOutputFrameDouble(input(_i).asInstanceOf[Tensor[Double]],
output(_i).asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateOutputFrameFloat(input(_i).asInstanceOf[Tensor[Float]],
output(_i).asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
})
i += 1
}
Engine.model.sync(results)
case DataFormat.NHWC =>
output.resize(Array(nbatch, outputHeight, outputWidth, nInputPlane))
var i = 1
while (i <= nbatch) {
val _i = i
results(_i - 1) = Engine.model.invoke(() => {
if (classTag[T] == classTag[Double]) {
updateOutputFrameDoubleNHWC(input(_i).asInstanceOf[Tensor[Double]],
output(_i).asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateOutputFrameFloatNHWC(input(_i).asInstanceOf[Tensor[Float]],
output(_i).asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
})
i += 1
}
Engine.model.sync(results)
}
}
if (!divide) {
output.mul(ev.fromType[Int](kW * kH))
}
output
}
private def updateGradInputFrameDouble(gradInput: Tensor[Double], gradOutput: Tensor[Double],
nInputPlane: Int, inputHeight: Int, inputWidth: Int,
outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(gradOutput.isContiguous())
val gradInputData = gradInput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
val gradOutputData = gradOutput.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
var k = 0
while (k < nInputPlane) {
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val divideFactor = if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
val z =
gradOutputData(gradOutputOffset + k * outputHeight * outputWidth +
yy * outputWidth + xx)
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
gradInputData(gradInputOffset +
k * inputHeight * inputWidth + ky * inputWidth + kx) += z / divideFactor
kx += 1
}
ky += 1
}
xx += 1
}
yy += 1
}
k += 1
}
}
private def updateGradInputFrameFloat(gradInput: Tensor[Float], gradOutput: Tensor[Float],
nInputPlane: Int, inputHeight: Int, inputWidth: Int,
outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(gradOutput.isContiguous())
val gradInputData = gradInput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
val gradOutputData = gradOutput.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
var k = 0
while (k < nInputPlane) {
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val divideFactor =
if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
val z = gradOutputData(gradOutputOffset + k * outputHeight * outputWidth +
yy * outputWidth + xx)
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
gradInputData(gradInputOffset + k * inputHeight * inputWidth + ky *
inputWidth + kx) += z / divideFactor
kx += 1
}
ky += 1
}
xx += 1
}
yy += 1
}
k += 1
}
}
private def updateGradInputFrameDoubleNHWC(
gradInput: Tensor[Double], gradOutput: Tensor[Double],
nInputPlane: Int, inputHeight: Int, inputWidth: Int,
outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(gradOutput.isContiguous())
val gradInputData = gradInput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
val gradOutputData = gradOutput.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val divideFactor =
if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
val outputOffset = gradOutputOffset + (yy * outputWidth + xx) * nInputPlane
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
var n = 0
val inputOffset = gradInputOffset + (ky * inputWidth + kx) * nInputPlane
while (n < nInputPlane) {
gradInputData(inputOffset + n) += gradOutputData(outputOffset + n) / divideFactor
n = n + 1
}
kx += 1
}
ky += 1
}
xx += 1
}
yy += 1
}
}
private def updateGradInputFrameFloatNHWC(
gradInput: Tensor[Float], gradOutput: Tensor[Float],
nInputPlane: Int, inputHeight: Int, inputWidth: Int,
outputHeight: Int, outputWidth: Int,
kW: Int, kH: Int, dW: Int, dH: Int,
padLeft: Int, padTop: Int, padRight: Int, padBottom: Int): Unit = {
require(gradOutput.isContiguous())
val gradInputData = gradInput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
val gradOutputData = gradOutput.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
var yy = 0
while (yy < outputHeight) {
var xx = 0
while (xx < outputWidth) {
var hStart = yy * dH - padTop
var wStart = xx * dW - padLeft
var hEnd = math.min(hStart + kH, inputHeight + padBottom)
var wEnd = math.min(wStart + kW, inputWidth + padRight)
val poolSize = (hEnd - hStart) * (wEnd - wStart)
hStart = math.max(hStart, 0)
wStart = math.max(wStart, 0)
hEnd = math.min(hEnd, inputHeight)
wEnd = math.min(wEnd, inputWidth)
val divideFactor =
if (countIncludePad) poolSize else (hEnd - hStart) * (wEnd - wStart)
val outputOffset = gradOutputOffset + (yy * outputWidth + xx) * nInputPlane
var ky = hStart
while (ky < hEnd) {
var kx = wStart
while (kx < wEnd) {
var n = 0
val inputOffset = gradInputOffset + (ky * inputWidth + kx) * nInputPlane
while (n < nInputPlane) {
gradInputData(inputOffset + n) += gradOutputData(outputOffset + n) / divideFactor
n = n + 1
}
kx += 1
}
ky += 1
}
xx += 1
}
yy += 1
}
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val inputSize = input.size()
updateGradInputInternal(inputSize, gradOutput)
}
private[bigdl] def updateGradInputInternal(inputSize: Array[Int],
gradOutput: Tensor[T]): Tensor[T] = {
require(inputSize.length == 3 || inputSize.length == 4,
"SpatialAveragePooling: " + ErrorInfo.constrainInputAs3DOrBatch +
s"input dimension ${inputSize.length}")
// dimh, dimw, dimc start with 1
val (dimh, dimw, dimc) = format.getHWCDims(inputSize.length)
val nInputPlane = inputSize(dimc - 1)
val inputHeight = inputSize(dimh - 1)
val inputWidth = inputSize(dimw - 1)
val sizes =
if (padW == -1 && padH == -1) {
// no ceil/floor mode in SAME padding
Utils.getSAMEOutSizeAndPadding(inputHeight, inputWidth, dH, dW, kH, kW)
} else {
require(inputWidth >= kW - padW && inputHeight >= kH - padH,
"input smaller than kernel size")
require(kW / 2 >= padW && kH / 2 >= padH, "pad should be smaller than half of kernel size")
Utils.getOutSizeAndPadding(inputHeight, inputWidth, dH, dW, kH, kW, padH, padW, ceilMode)
}
val padTop = sizes(0)
val padBottom = sizes(1)
val padLeft = sizes(2)
val padRight = sizes(3)
val outputHeight = sizes(4)
val outputWidth = sizes(5)
gradInput.resize(inputSize).zero()
if (inputSize.length == 3) {
format match {
case DataFormat.NCHW =>
if (classTag[T] == classTag[Double]) {
updateGradInputFrameDouble(gradInput.asInstanceOf[Tensor[Double]],
gradOutput.asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateGradInputFrameFloat(gradInput.asInstanceOf[Tensor[Float]],
gradOutput.asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
case DataFormat.NHWC =>
if (classTag[T] == classTag[Double]) {
updateGradInputFrameDoubleNHWC(gradInput.asInstanceOf[Tensor[Double]],
gradOutput.asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateGradInputFrameFloatNHWC(gradInput.asInstanceOf[Tensor[Float]],
gradOutput.asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
}
} else {
val nBatch = inputSize(0)
if (results == null || results.length != nBatch) {
results = new Array[Future[Unit]](nBatch)
}
format match {
case DataFormat.NCHW =>
var i = 1
while (i <= nBatch) {
val _i = i
results(_i - 1) = Engine.model.invoke(() => {
if (classTag[T] == classTag[Double]) {
updateGradInputFrameDouble(gradInput(_i).asInstanceOf[Tensor[Double]],
gradOutput(_i).asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateGradInputFrameFloat(gradInput(_i).asInstanceOf[Tensor[Float]],
gradOutput(_i).asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
})
i += 1
}
Engine.model.sync(results)
case DataFormat.NHWC =>
var i = 1
while (i <= nBatch) {
val _i = i
results(_i - 1) = Engine.model.invoke(() => {
if (classTag[T] == classTag[Double]) {
updateGradInputFrameDoubleNHWC(gradInput(_i).asInstanceOf[Tensor[Double]],
gradOutput(_i).asInstanceOf[Tensor[Double]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
} else {
updateGradInputFrameFloatNHWC(gradInput(_i).asInstanceOf[Tensor[Float]],
gradOutput(_i).asInstanceOf[Tensor[Float]],
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kW, kH, dW, dH, padLeft, padTop, padRight, padBottom)
}
})
i += 1
}
Engine.model.sync(results)
}
}
if (!divide) {
gradInput.mul(ev.fromType[Int](kW * kH))
}
gradInput
}
override def equals(obj: Any): Boolean = {
if (!super.equals(obj)) {
return false
}
if (!obj.isInstanceOf[SpatialAveragePooling[T]]) {
return false
}
val other = obj.asInstanceOf[SpatialAveragePooling[T]]
if (this.eq(other)) {
return true
}
kW == other.kW && kH == other.kH && dW == other.dW && dH == other.dH && padW == other.padW &&
padH == other.padH && ceilMode == other.ceilMode &&
countIncludePad == other.countIncludePad && divide == other.divide
}
override def hashCode() : Int = {
val seed = 37
var hash = super.hashCode()
hash = hash * seed + kW.hashCode()
hash = hash * seed + kH.hashCode()
hash = hash * seed + dW.hashCode()
hash = hash * seed + dH.hashCode()
hash = hash * seed + padW.hashCode()
hash = hash * seed + padH.hashCode()
hash = hash * seed + ceilMode.hashCode()
hash = hash * seed + countIncludePad.hashCode()
hash = hash * seed + divide.hashCode()
hash
}
override def toString(): String = {
s"${getPrintName}($kW, $kH, $dW, $dH, $padW, $padH)"
}
}
object SpatialAveragePooling {
def apply[T: ClassTag](
kW: Int,
kH: Int,
dW: Int = 1,
dH: Int = 1,
padW: Int = 0,
padH: Int = 0,
globalPooling: Boolean = false,
ceilMode: Boolean = false,
countIncludePad: Boolean = true,
divide: Boolean = true,
format: DataFormat = DataFormat.NCHW)
(implicit ev: TensorNumeric[T]) : SpatialAveragePooling[T] = {
new SpatialAveragePooling[T](kW, kH, dW, dH, padW, padH, globalPooling,
ceilMode, countIncludePad, divide, format)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy