com.intel.analytics.bigdl.nn.SpatialConvolutionMap.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.{DenseTensorConv, Storage, Tensor}
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* This class is a generalization of SpatialConvolution.
* It uses a generic connection table between input and output features.
* The SpatialConvolution is equivalent to using a full connection table.
*
* @param wRegularizer: instance of [[Regularizer]]
* (eg. L1 or L2 regularization), applied to the input weights matrices.
* @param bRegularizer: instance of [[Regularizer]]
* applied to the bias.
*/
@SerialVersionUID(5288662921102331388L)
class SpatialConvolutionMap[T: ClassTag](
val connTable: Tensor[T],
val kW: Int, // The kernel width of the convolution
val kH: Int, // The kernel height of the convolution
val dW: Int = 1, // The step of the convolution in the width dimension.
val dH: Int = 1, // The step of the convolution in the height dimension
val padW: Int = 0, // The additional zeros added per width to the input planes.
val padH: Int = 0, // The additional zeros added per height to the input planes.
var wRegularizer: Regularizer[T] = null,
var bRegularizer: Regularizer[T] = null
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
val nInputPlane = ev.toType[Int](connTable.select(2, 1).max())
val nOutputPlane = ev.toType[Int](connTable.select(2, 2).max())
val weight: Tensor[T] = Tensor[T](connTable.size(1), kH, kW)
val bias: Tensor[T] = Tensor[T](nOutputPlane)
val gradWeight: Tensor[T] = Tensor[T](connTable.size(1), kH, kW)
val gradBias: Tensor[T] = Tensor[T](nOutputPlane)
reset()
// todo write a new InitializationMethod to wrap the following procedure
override def reset(): Unit = {
val ninp = Tensor[T](this.nOutputPlane).zero()
var i = 1
while (i <= connTable.size(1)) {
ninp(Array(ev.toType[Int](connTable(Array(i, 2))))) = ev.plus(ninp(Array(ev.toType[Int](
connTable(Array(i, 2))))), ev.fromType[Int](1))
i = i + 1
}
var k = 1
var stdv = ev.fromType[Int](0)
while (k <= connTable.size(1)) {
stdv = ev.divide(ev.fromType[Int](1), ev.sqrt(ev.times(ev.fromType[Int](kW * kH), ninp(
Array(ev.toType[Int](connTable(Array(k, 2))))))))
weight.select(1, k).apply1(_ => weight.uniform(ev.negative(stdv), stdv))
k = k + 1
}
k = 1
while (k <= bias.size(1)) {
stdv = ev.divide(ev.fromType[Int](1), ev.sqrt(ev.times(ev.fromType[Int](kW * kH), ninp(
Array(k)))))
bias(k) = bias.uniform(ev.negative(stdv), stdv)
k = k + 1
}
zeroGradParameters()
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.nDimension() == 3 || input.nDimension() == 4,
"3D or 4D(batch mode) tensor expected" +
s"input dimension ${input.nDimension()}")
val dimw = if (input.nDimension() == 4) 4 else 3
val dimh = if (input.nDimension() == 4) 3 else 2
val dimc = if (input.nDimension() == 4) 2 else 1
val nbatch = if (input.nDimension() == 4) input.size(1) else 1
require(input.size(dimc) >= nInputPlane, "invalid number of input planes" +
s"input number ${input.size(dimc)}")
require(input.size(dimw) >= kW && input.size(dimh) >= kH,
"input smaller than kernel size" +
s"input size (${input.size(dimw)},${input.size(dimh)}) " +
s"kernel size (${kW},${kH})")
val inputW = input.size(dimw)
val inputH = input.size(dimh)
val outputW = (inputW - kW) / dW + 1
val outputH = (inputH - kH) / dH + 1
// force batch
if (input.nDimension() == 3) {
output.resize(Array(1, nOutputPlane, outputH, outputW))
} else {
output.resize(Array(input.size(1), nOutputPlane, outputH, outputW))
}
val connTableIndex = new Array[Int](2)
val outputIndex = new Array[Int](4)
val biasIndex = new Array[Int](1)
var m = 0
while (m < nbatch) {
var p = 0
outputIndex(0) = m + 1
while (p < nOutputPlane) {
outputIndex(1) = p + 1
biasIndex(0) = p + 1
val z = bias(biasIndex)
var j = 0
while (j < outputH) {
outputIndex(2) = j + 1
var k = 0
while (k < outputW) {
outputIndex(3) = k + 1
output(outputIndex) = z
k += 1
}
j += 1
}
p += 1
}
val nWeight = connTable.size(1)
var k = 1
while (k <= nWeight) {
connTableIndex(0) = k
connTableIndex(1) = 2
val o = ev.toType[Int](connTable(connTableIndex))
connTableIndex(1) = 1
val i = ev.toType[Int](connTable(connTableIndex))
DenseTensorConv.validXCorr2Dptr[T](output.storage(),
output.storageOffset() - 1 + (o - 1 + m * nOutputPlane) * outputH * outputW,
ev.fromType[Int](1), input.storage(),
input.storageOffset() - 1 + (i - 1 + m * nInputPlane) * inputW * inputH, inputH,
inputW, weight.storage(), weight.storageOffset() - 1 + (k - 1) * kW * kH, kH, kW, dH, dW)
k += 1
}
m += 1
}
if (input.nDimension() == 3) {
output.squeeze(1)
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val dimw = if (input.nDimension() == 4) 4 else 3
val dimh = if (input.nDimension() == 4) 3 else 2
val nbatch = if (input.nDimension() == 4) input.size(1) else 1
val inputW = input.size(dimw)
val inputH = input.size(dimh)
val weightH = weight.size(2)
val weightW = weight.size(3)
val outputH = gradOutput.size(dimh)
val outputW = gradOutput.size(dimw)
gradInput.resizeAs(input)
gradInput.zero()
val connTableIndex = new Array[Int](2)
var m = 0
while (m < nbatch) {
val nkernel = connTable.size(1)
var k = 1
while (k <= nkernel) {
connTableIndex(0) = k
connTableIndex(1) = 2
val o = ev.toType[Int](connTable(connTableIndex))
connTableIndex(1) = 1
val i = ev.toType[Int](connTable(connTableIndex))
// println(s"o:${o} i:${i}")
DenseTensorConv.fullConv2Dptr(gradInput.storage().asInstanceOf[Storage[Double]],
gradInput.storageOffset() - 1 + (i - 1 + m * nInputPlane) * inputW * inputH,
1.0, gradOutput.storage().asInstanceOf[Storage[Double]], gradOutput.storageOffset() - 1
+ (o - 1 + m * nOutputPlane) * outputH * outputW,
outputH, outputW, weight.storage().asInstanceOf[Storage[Double]], weight.storageOffset()
- 1 + (k - 1) * weightW * weightH, weightH, weightW, dH, dW)
// print(gradInput)
// println()
k += 1
}
m += 1
}
gradInput
}
override def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit = {
val dimw = if (input.dim() == 4) 4 else 3
val dimh = if (input.dim() == 4) 3 else 2
val nbatch = if (input.dim() == 4) input.size(1) else 1
val inputW = input.size(dimw)
val inputH = input.size(dimh)
val outputW = gradOutput.size(dimw)
val outputH = gradOutput.size(dimh)
val weightH = weight.size(2)
val weightW = weight.size(3)
// force batch
val forceBatch = if (gradOutput.nDimension() == 3) {
gradOutput.addSingletonDimension()
true
} else {
false
}
var m = 1
if (scaleB != 0) {
val gradOutputIndex = new Array[Int](4)
val gradBiasIndex = new Array[Int](1)
while (m <= nbatch) {
gradOutputIndex(0) = m
var k = 1
while (k <= nOutputPlane) {
gradOutputIndex(1) = k
gradBiasIndex(0) = k
var l = 1
while (l <= outputH) {
gradOutputIndex(2) = l
var n = 1
while (n <= outputW) {
gradOutputIndex(3) = n
gradBias(gradBiasIndex) = ev.plus(gradBias(gradBiasIndex),
ev.times(ev.fromType[Double](scaleB), gradOutput(gradOutputIndex)))
n += 1
}
l += 1
}
k += 1
}
m += 1
}
}
m = 0
if (scaleW != 0) {
val nkernel = connTable.size(1)
val connTableIndex = new Array[Int](2)
while (m < nbatch) {
var k = 1
while (k <= nkernel) {
connTableIndex(0) = k
connTableIndex(1) = 2
val o = ev.toType[Int](connTable(connTableIndex))
connTableIndex(1) = 1
val i = ev.toType[Int](connTable(connTableIndex))
DenseTensorConv.validXCorr2DRevptr(gradWeight.storage(),
gradWeight.storageOffset() - 1 + (k - 1) * weightH * weightW,
ev.fromType[Double](scaleW), input.storage(),
input.storageOffset() - 1 + (i - 1 + m * nInputPlane) * inputW * inputH,
inputH, inputW, gradOutput.storage(),
gradOutput.storageOffset() - 1 + (o - 1 + m * nOutputPlane) * outputW * outputH,
outputH, outputW, dH, dW)
k += 1
}
m += 1
}
}
if (forceBatch) {
gradOutput.squeeze(1)
}
if (null != wRegularizer && scaleW != 0) {
wRegularizer.accRegularization(weight, gradWeight, scaleW)
}
if (null != bRegularizer && scaleB != 0) {
bRegularizer.accRegularization(bias, gradBias, scaleB)
}
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(Array(this.weight, this.bias), Array(this.gradWeight, this.gradBias))
}
def decayParameters(decay: T): Unit = {
weight.apply1(ev.minus(_, decay))
bias.apply1(ev.minus(_, decay))
}
}
object SpatialConvolutionMap {
def apply[@specialized(Float, Double) T: ClassTag](
connTable: Tensor[T],
kW: Int,
kH: Int,
dW: Int = 1,
dH: Int = 1,
padW: Int = 0,
padH: Int = 0,
wRegularizer: Regularizer[T] = null,
bRegularizer: Regularizer[T] = null
)(implicit ev: TensorNumeric[T]) : SpatialConvolutionMap[T] = {
new SpatialConvolutionMap[T](connTable, kW, kH, dW, dH, padW, padH,
wRegularizer, bRegularizer)
}
def full[@specialized(Float, Double) T: ClassTag](nin: Int, nout: Int)(
implicit ev: TensorNumeric[T]): Tensor[T] = {
val ft = Tensor[T](nin * nout, 2)
var p = 1
var j = 1
while (j <= nout) {
var i = 1
while (i <= nin) {
ft.setValue(p, 1, ev.fromType[Int](i))
ft.setValue(p, 2, ev.fromType[Int](j))
p = p + 1
i = i + 1
}
j = j + 1
}
ft
}
def oneToOne[@specialized(Float, Double) T: ClassTag](nfeat: Int)(
implicit ev: TensorNumeric[T]): Tensor[T] = {
val ft = Tensor[T](nfeat, 2)
var i = 1
while (i <= nfeat) {
ft(i)(1) = ev.fromType[Int](i)
ft(i)(2) = ev.fromType[Int](i)
i = i + 1
}
ft
}
def random[@specialized(Float, Double) T: ClassTag](nin: Int, nout: Int, nto: Int)(
implicit ev: TensorNumeric[T]): Tensor[T] = {
val nker = nto * nout
val tbl = Tensor[T](nker, 2)
val fi = Tensor.randperm[T](nin)
var frcntr = 1
val nfi = Math.floor(nin / nto).toInt // number of distinct nto chunks
val totbl = tbl.select(2, 2)
val frtbl = tbl.select(2, 1)
val fitbl = fi.narrow(1, 1, nfi * nto) // part of fi that covers distinct chunks
val ufrtbl = frtbl.unfold(1, nto, nto)
val utotbl = totbl.unfold(1, nto, nto)
val ufitbl = fitbl.unfold(1, nto, nto)
// start filling frtbl
var i = 1
while (i <= nout) {
// fro each unit in target map
ufrtbl.select(1, i).copy(ufitbl.select(1, frcntr))
frcntr = frcntr + 1
if (frcntr - 1 == nfi) {
fi.copy(Tensor.randperm[T](nin))
frcntr = 1
}
i = i + 1
}
var tocntr = 1
while (tocntr <= utotbl.size(1)) {
utotbl.select(1, tocntr).fill(ev.fromType[Int](tocntr))
tocntr = tocntr + 1
}
tbl
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy