com.intel.analytics.bigdl.nn.Sum.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* It is a simple layer which applies a sum operation over the given dimension.
* When nInputDims is provided, the input will be considered as a batches.
* Then the sum operation will be applied in (dimension + 1)
*
* The input to this layer is expected to be a tensor, or a batch of tensors;
* when using mini-batch, a batch of sample tensors will be passed to the layer and
* the user need to specify the number of dimensions of each sample tensor in the
* batch using `nInputDims`.
*
* @param dimension the dimension to be applied sum operation
* @param nInputDims specify the number of dimensions that this module will receive
* If it is more than the dimension of input tensors, the first dimension
* would be considered as batch size
* @param sizeAverage default is false, if it is true, it will return the mean instead
* @param squeeze default is true, which will squeeze the sum dimension; set it to false to keep
* the sum dimension
*/
@SerialVersionUID(- 8025422596092583688L)
class Sum[T: ClassTag](
private var dimension: Int = 1,
nInputDims: Int = -1,
sizeAverage: Boolean = false,
squeeze: Boolean = true)
(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
@transient
private var _gradOutput: Tensor[T] = null
private def getPositiveDimension(input: Tensor[T]): Int = {
var dimension = this.dimension
if (dimension < 0) {
dimension = input.dim() + dimension + 1
}
if (nInputDims > 0 && input.dim() == (nInputDims + 1)) {
dimension += 1
}
require(input.dim() >= dimension, "dimension exceeds input dimensions" +
s"dimension $dimension, input dimension ${input.dim()}")
dimension
}
def changeSumDims(d: Int): this.type = {
dimension = d
this
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val dimension = getPositiveDimension(input)
output.sum(input, dimension)
if (sizeAverage) {
output.div(ev.fromType(input.size(dimension)))
}
if (output.nDimension() > 1 && squeeze) {
output.squeeze(dimension)
}
if (output.nElement() == 1 && squeeze) {
output = Tensor.scalar[T](output.storage.apply(output.storageOffset() - 1))
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val dimension = getPositiveDimension(input)
val size = input.size()
size(dimension - 1) = 1
if (!gradOutput.isContiguous()) {
_gradOutput = gradOutput.clone().view(size)
} else {
_gradOutput = gradOutput.view(size)
}
gradInput.resizeAs(input)
gradInput.copy(_gradOutput.expandAs(input))
if (sizeAverage) {
gradInput.div(ev.fromType(input.size(dimension)))
}
gradInput
}
override def toString: String = s"nn.Sum"
}
object Sum {
def apply[T: ClassTag](
dimension: Int = 1,
nInputDims: Int = -1,
sizeAverage: Boolean = false,
squeeze: Boolean = true)(implicit ev: TensorNumeric[T]) : Sum[T] = {
new Sum[T](dimension, nInputDims, sizeAverage, squeeze)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy