com.intel.analytics.bigdl.nn.Tanh.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{IdentityOutputShape, TensorModule}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.math.tanh
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Applies the Tanh function element-wise to the input Tensor,
* thus outputting a Tensor of the same dimension.
* Tanh is defined as f(x) = (exp(x)-exp(-x))/(exp(x)+exp(-x)).
*/
@SerialVersionUID(9062199894710333035L)
class Tanh[T: ClassTag](
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
private val buffer: Tensor[T] = Tensor[T]()
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
output.tanh(input)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
updateGradInputInternal(output, gradOutput)
}
private[bigdl] def updateGradInputInternal(output: Tensor[T],
gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(gradOutput)
buffer.resizeAs(output)
buffer.pow(output, ev.fromType(2)).cmul(gradOutput)
gradInput.sub(gradOutput, buffer)
gradInput
}
override def clearState(): this.type = {
super.clearState()
buffer.set()
this
}
override def computeOutputShape(inputShape: Shape): Shape = {
inputShape
}
}
object Tanh {
def apply[T: ClassTag]()
(implicit ev: TensorNumeric[T]) : Tanh[T] = {
new Tanh[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy