com.intel.analytics.bigdl.nn.TemporalMaxPooling.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Applies 1D max-pooling operation in kW regions by step size dW steps.
* Input sequence composed of nInputFrame frames.
* The input tensor in forward(input) is expected to be a 2D tensor (nInputFrame x inputFrameSize)
* or a 3D tensor (nBatchFrame x nInputFrame x inputFrameSize).
*
* If the input sequence is a 2D tensor of dimension nInputFrame x inputFrameSize,
* the output sequence will be nOutputFrame x inputFrameSize where
*
* nOutputFrame = (nInputFrame - kW) / dW + 1
*
* @param kW kernel width
* @param dW step size in width, default is -1, means the `dW` equals `kW`
* @tparam T The numeric type in the criterion, usually which are [[Float]] or [[Double]]
*/
class TemporalMaxPooling[T: ClassTag](
val kW: Int, var dW: Int = -1)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
private val indices: Tensor[T] = Tensor()
private val inputC: Tensor[T] = Tensor()
private val gradOutputC: Tensor[T] = Tensor()
if (dW == -1) {
dW = kW
}
private def shapeCheck(
input: Tensor[T],
gradOutput: Tensor[T],
indices: Tensor[T],
kW: Int,
dW: Int
): Unit = {
var dimS = 1 // sequence dimension
var dimF = 2 // feature dimension
val ndims = input.nDimension()
if (input.nDimension() == 3)
{
dimS = 2
dimF = 3
}
val niframe = input.size(dimS)
val framesize = input.size(dimF)
val noframe = (niframe - kW) / dW + 1
require(kW > 0,
s"kernel size should be greater than zero, but got kW: $kW")
require(dW > 0,
s"stride should be greater than zero, but got dW: $dW")
require(input.nDimension() == 2 || input.nDimension() == 3,
s"2D or 3D (batch mode) tensor expected for input, but got: ${input.nDimension()}")
require(input.size(dimS) >= kW,
s"input sequence smaller than kernel size. Got: ${input.size(dimS)}, Expected: $kW")
if (gradOutput != null) {
require(gradOutput.nDimension() == ndims,
s"gradOuput should have $ndims dimension, but got ${gradOutput.nDimension()}")
require(gradOutput.size(dimS) == noframe,
s"gradOutput's $dimS dimension expects $noframe size," +
s" but got ${gradOutput.size(dimS)} dimension")
require(gradOutput.size(dimF) == framesize,
s"gradOutput's $dimF dimension expects $framesize size," +
s" but got ${gradOutput.size(dimF)} dimension")
}
if (indices != null) {
require(indices.nDimension() == ndims,
s"indices should have $ndims dimension, but got ${indices.nDimension()}")
require(indices.size(dimS) == noframe,
s"indices's $dimS dimension expects $noframe size," +
s" but got ${gradOutput.size(dimS)} dimension")
require(indices.size(dimF) == framesize,
s"indices's $dimF dimension expects $framesize size," +
s" but got ${gradOutput.size(dimF)} dimension")
}
}
def updateOutput(input: Tensor[T]): Tensor[T] = {
var nIFrame = 0
var nOFrame = 0
var frameSize = 0
var dimS = 1 // sequence dimension
var dimF = 2 // feature dimension
shapeCheck(input, null, null, kW, dW)
if (input.nDimension() == 3) {
dimS = 2
dimF = 3
}
nIFrame = input.size(dimS)
frameSize = input.size(dimF)
nOFrame = (nIFrame - kW) / dW + 1
inputC.resizeAs(input).copy(input)
if (inputC.nDimension() == 2) {
output.resize(nOFrame, frameSize)
indices.resize(nOFrame, frameSize)
ev.getType() match {
case DoubleType => NNPrimitive.temporalMaxPoolingForwardDouble(
inputC.asInstanceOf[Tensor[Double]].storage().array(), inputC.storageOffset() - 1,
output.asInstanceOf[Tensor[Double]].storage().array(), output.storageOffset() - 1,
indices.asInstanceOf[Tensor[Double]].storage().array(), indices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case FloatType => NNPrimitive.temporalMaxPoolingForwardFloat(
inputC.asInstanceOf[Tensor[Float]].storage().array(), inputC.storageOffset() - 1,
output.asInstanceOf[Tensor[Float]].storage().array(), output.storageOffset() - 1,
indices.asInstanceOf[Tensor[Float]].storage().array(), indices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case _ => throw new UnsupportedOperationException(
"TemporalMaxPooling: only Float/Double type supported")
}
} else {
val nbFrame = input.size(1)
output.resize(nbFrame, nOFrame, frameSize)
indices.resize(nbFrame, nOFrame, frameSize)
var i = 1
while (i <= nbFrame) {
val curInput = inputC(i)
val curOutput = output(i)
val curIndices = indices(i)
ev.getType() match {
case DoubleType => NNPrimitive.temporalMaxPoolingForwardDouble(
curInput.asInstanceOf[Tensor[Double]].storage().array(),
curInput.storageOffset() - 1,
curOutput.asInstanceOf[Tensor[Double]].storage().array(),
curOutput.storageOffset() - 1,
curIndices.asInstanceOf[Tensor[Double]].storage().array(),
curIndices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case FloatType => NNPrimitive.temporalMaxPoolingForwardFloat(
curInput.asInstanceOf[Tensor[Float]].storage().array(),
curInput.storageOffset() - 1,
curOutput.asInstanceOf[Tensor[Float]].storage().array(),
curOutput.storageOffset() - 1,
curIndices.asInstanceOf[Tensor[Float]].storage().array(),
curIndices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case _ => throw new UnsupportedOperationException(
"TemporalMaxPooling: only Float/Double type supported")
}
i += 1
}
}
output
}
def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
shapeCheck(input, gradOutput, indices, kW, dW)
gradOutputC.resizeAs(gradOutput).copy(gradOutput)
gradInput.resizeAs(input)
gradInput.zero()
var dimS = 1 // sequence dimension
var dimF = 2 // feature dimension
if (input.nDimension() == 3) {
dimS = 2
dimF = 3
}
val nOFrame = gradOutputC.size(dimS)
val frameSize = gradOutputC.size(dimF)
if (input.dim() == 2) {
ev.getType() match {
case DoubleType => NNPrimitive.temporalMaxPoolingBackwardDouble(
gradInput.asInstanceOf[Tensor[Double]].storage().array(),
gradInput.storageOffset() - 1,
gradOutputC.asInstanceOf[Tensor[Double]].storage().array(),
gradOutputC.storageOffset() - 1,
indices.asInstanceOf[Tensor[Double]].storage().array(),
indices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case FloatType => NNPrimitive.temporalMaxPoolingBackwardFloat(
gradInput.asInstanceOf[Tensor[Float]].storage().array(),
gradInput.storageOffset() - 1,
gradOutputC.asInstanceOf[Tensor[Float]].storage().array(),
gradOutputC.storageOffset() - 1,
indices.asInstanceOf[Tensor[Float]].storage().array(),
indices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case _ => throw new UnsupportedOperationException(
"TemporalMaxPooling: only Float/Double type supported")
}
} else {
val nBFrame = input.size(1)
var i = 1
while (i <= nBFrame) {
val curGradInput = gradInput(i)
val curGradOutput = gradOutputC(i)
val curIndices = indices(i)
ev.getType() match {
case DoubleType => NNPrimitive.temporalMaxPoolingBackwardDouble(
curGradInput.asInstanceOf[Tensor[Double]].storage().array(),
curGradInput.storageOffset() - 1,
curGradOutput.asInstanceOf[Tensor[Double]].storage().array(),
curGradOutput.storageOffset() - 1,
curIndices.asInstanceOf[Tensor[Double]].storage().array(),
curIndices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case FloatType => NNPrimitive.temporalMaxPoolingBackwardFloat(
curGradInput.asInstanceOf[Tensor[Float]].storage().array(),
curGradInput.storageOffset() - 1,
curGradOutput.asInstanceOf[Tensor[Float]].storage().array(),
curGradOutput.storageOffset() - 1,
curIndices.asInstanceOf[Tensor[Float]].storage().array(),
curIndices.storageOffset() - 1,
nOFrame, frameSize, kW, dW
)
case _ => throw new UnsupportedOperationException(
"TemporalMaxPooling: only Float/Double type supported")
}
i += 1
}
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[TemporalMaxPooling[T]]
override def equals(other: Any): Boolean = other match {
case that: TemporalMaxPooling[T] =>
super.equals(that) &&
(that canEqual this) &&
this.kW == that.kW &&
this.dW == that.dW
case _ => false
}
override def hashCode() : Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), kW, dW)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString(): String = {
s"${getPrintName()}($kW, $dW)"
}
override def clearState(): this.type = {
super.clearState()
indices.set()
inputC.set()
gradOutputC.set()
this
}
}
object TemporalMaxPooling {
def apply[@specialized(Float, Double) T: ClassTag](
kW: Int,
dW: Int = 1)(implicit ev: TensorNumeric[T]): TemporalMaxPooling[T] = {
new TemporalMaxPooling[T](kW, dW)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy