com.intel.analytics.bigdl.nn.UpSampling3D.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Upsampling layer for 3D inputs.
* Repeats the 1st, 2nd and 3rd dimensions
* of the data by size[0], size[1] and size[2] respectively.
* The input data is assumed to be of the form `minibatch x channels x depth x height x width`.
*
* @param size Repeats the depth, height, width dimensions of the data by
* size[0], size[1] and size[2] respectively.
* @tparam T The numeric type in the criterion, usually which are [[Float]] or [[Double]]
*/
@SerialVersionUID(3462228835945094156L)
class UpSampling3D[T: ClassTag](val size: Array[Int])
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
require(size != null && size.length == 3, "the size should be 3 dims")
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
require(input.length == 5,
s"UpSampling3D requires 5D input, but got input dim ${input.length}")
Shape(input(0), input(1), input(2)*size(0), input(3)*size(1), input(4)*size(2))
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.dim() == 5, "only supports 5d tensors")
require(input.isContiguous(), "input need to be contiguous")
val inputDepth = input.size(3)
val inputHeight = input.size(4)
val inputWidth = input.size(5)
val dT = size(0)
val dH = size(1)
val dW = size(2)
val outputDepth = inputDepth * dT
val outputHeight = inputHeight * dH
val outputWidth = inputWidth * dW
output.resize(input.size(1), input.size(2), outputDepth, outputHeight, outputWidth)
// dims
val idim = input.dim()
val xDim = idim - 1
val yDim = idim - 2
val zDim = idim - 3
val osz0 = output.size(1)
val osz1 = output.size(2)
val osz2 = output.size(3)
val osz3 = output.size(4)
val osz4 = output.size(5)
// get strides
val is = input.stride()
val os = output.stride()
// get raw pointers
val pin = input.storage().array()
val inOffset = input.storageOffset() - 1
val pout = output.storage().array()
val outOffset = output.storageOffset() - 1
// perform the upsampling
var i0, i1, i2, i3, i4, isrc, idst = 0
val iout = new Array[Int](5) // Output indices
val iin = new Array[Int](5) // Input indices
i0 = 0
while (i0 < osz0) {
iout(0) = i0
iin(0) = i0
i1 = 0
while (i1 < osz1) {
iout(1) = i1
iin(1) = i1
i2 = 0
while (i2 < osz2) {
iout(2) = i2
iin(2) = i2
i3 = 0
while (i3 < osz3) {
iout(3) = i3
iin(3) = i3
i4 = 0
while (i4 < osz4) {
iout(4) = i4
iin(4) = i4
// set the indices for the upsampled dimensions
iin(xDim) = iout(xDim) / dW
iin(yDim) = iout(yDim) / dH
iin(zDim) = iout(zDim) / dT
idst = i0 * os(0) + i1 * os(1) + i2 * os(2) + i3 * os(3)
isrc = iin(0) * is(0) + iin(1) * is(1) + iin(2) * is(2) + iin(3) * is(3)
if (idim > 4) {
idst += i4 * os(4)
isrc += iin(4) * is(4)
}
pout(outOffset + idst) = pin(inOffset + isrc)
i4 += 1
}
i3 += 1
}
i2 += 1
}
i1 += 1
}
i0 += 1
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input).zero()
val dT = size(0)
val dH = size(1)
val dW = size(2)
// dims
val idim = gradInput.dim()
val xDim = idim - 1
val yDim = idim - 2
val zDim = idim - 3
val isz0 = gradInput.size(1)
val isz1 = gradInput.size(2)
val isz2 = gradInput.size(3)
val isz3 = gradInput.size(4)
val isz4 = gradInput.size(5)
val is = gradInput.stride()
val os = gradOutput.stride()
val pin = gradInput.storage().array()
val pout = gradOutput.storage().array()
val inOffset = gradInput.storageOffset() - 1
val outOffset = gradOutput.storageOffset() - 1
// perform the upsampling
var i0, i1, i2, i3, i4, isrc, idst, x, y, z = 0
val iin = new Array[Int](5) // Input indices
val iout = new Array[Int](5) // Output indices
i0 = 0
while (i0 < isz0) {
iout(0) = i0
iin(0) = i0
i1 = 0
while (i1 < isz1) {
iout(1) = i1
iin(1) = i1
i2 = 0
while (i2 < isz2) {
iout(2) = i2
iin(2) = i2
i3 = 0
while (i3 < isz3) {
iout(3) = i3
iin(3) = i3
i4 = 0
while (i4 < isz4) {
iout(4) = i4
iin(4) = i4
idst = i0 * is(0) + i1 * is(1) + i2 * is(2) + i3 * is(3)
if (idim > 4) {
idst += i4 * is(4)
}
// Now accumulate the gradients from gradOutput
z = 0
while (z < dT) {
y = 0
while (y < dH) {
x = 0
while (x < dW) {
iout(xDim) = dW * iin(xDim) + x
iout(yDim) = dH * iin(yDim) + y
iout(zDim) = dT * iin(zDim) + z
isrc = iout(0) * os(0) + iout(1) * os(1) + iout(2) * os(2) + iout(3) * os(3)
if (idim > 4) {
isrc += iout(4) * os(4)
}
pin(inOffset + idst) = ev.plus(pin(inOffset + idst), pout(outOffset + isrc))
x += 1
}
y += 1
}
z += 1
}
i4 += 1
}
i3 += 1
}
i2 += 1
}
i1 += 1
}
i0 += 1
}
gradInput
}
}
object UpSampling3D {
def apply[@specialized(Float, Double) T: ClassTag](size: Array[Int])
(implicit ev: TensorNumeric[T]): UpSampling3D[T] = new UpSampling3D(size)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy