com.intel.analytics.bigdl.nn.keras.Bidirectional.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Shape, Table}
import scala.reflect.ClassTag
/**
* Bidirectional wrapper for RNNs.
* Bidirectional currently requires RNNs to return the full sequence, i.e. returnSequences = true.
*
* When using this layer as the first layer in a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* Example of creating a bidirectional LSTM:
* Bidirectiona(LSTM(12, returnSequences = true), mergeMode = "sum", inputShape = Shape(32, 32))
*
* @param layer An instance of a recurrent layer.
* @param mergeMode Mode by which outputs of the forward and backward RNNs will be combined.
* Must be one of: 'sum', 'mul', 'concat', 'ave'. Default is 'concat'.
* @tparam T The numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class Bidirectional[T: ClassTag](
val layer: Recurrent[T],
val mergeMode: String = "concat",
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
private val mode = mergeMode.toLowerCase()
require(layer.returnSequences,
"Bidirectional currently requires RNNs to return the full sequence")
require(mode == "sum" || mode == "mul" || mode == "concat" || mode == "ave",
s"Invalid merge mode: $mode")
override def computeOutputShape(inputShape: Shape): Shape = {
val output = layer.build(inputShape)
if (mode == "concat") {
val outputArray = output.toSingle().toArray
outputArray(outputArray.length-1) = outputArray.last * 2
Shape(outputArray)
}
else output
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val recurrent = layer.buildCell(input)
val merge = mode match {
case "concat" => JoinTable(input.length -1, input.length -1)
case "sum" => CAddTable()
case "mul" => CMulTable()
case "ave" => CAveTable()
}
BiRecurrent(merge.asInstanceOf[AbstractModule[Table, Tensor[T], T]]).add(recurrent)
}
}
object Bidirectional {
def apply[@specialized(Float, Double) T: ClassTag](
layer: Recurrent[T],
mergeMode: String = "concat",
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): Bidirectional[T] = {
new Bidirectional[T](layer, mergeMode, inputShape)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy