com.intel.analytics.bigdl.nn.keras.ConvLSTM2D.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.{ConvLSTMPeephole, Reverse, Select, Sequential => TSequential}
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, TensorModule}
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Convolutional LSTM.
* Data format currently supported for this layer is 'CHANNEL_FIRST' (dimOrdering='th').
* Border mode currently supported for this layer is 'same'.
* The convolution kernel for this layer is a square kernel with equal strides 'subsample'.
* The input of this layer should be 5D.
*
* When using this layer as the first layer in a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param nbFilter Number of convolution filters to use.
* @param nbKernel Number of rows/columns in the convolution kernel. Square kernel.
* @param activation Activation function to use.
* You can also pass in corresponding string representations such as 'relu'
* or 'sigmoid', etc. for simple activations in the factory method.
* Default is 'tanh'.
* @param innerActivation Activation function for inner cells.
* You can also pass in corresponding string representations such as 'relu'
* or 'sigmoid', etc. for simple activations in the factory method.
* Default is 'hard_sigmoid'.
* @param dimOrdering Format of input data. Please use "CHANNEL_FIRST" (dimOrdering='th').
* @param subsample Factor by which to subsample output.
* Also called strides elsewhere. Default is 1.
* @param wRegularizer An instance of [[Regularizer]], (eg. L1 or L2 regularization),
* applied to the input weights matrices. Default is null.
* @param uRegularizer An instance of [[Regularizer]], (eg. L1 or L2 regularization),
* applied to the recurrent weights matrices. Default is null.
* @param bRegularizer An instance of [[Regularizer]], applied to the bias. Default is null.
* @param returnSequences Whether to return the full sequence or the last output
* in the output sequence. Default is false.
* @param goBackwards Whether the input sequence will be processed backwards. Default is false.
* @tparam T The numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class ConvLSTM2D[T: ClassTag](
val nbFilter: Int,
val nbKernel: Int,
val activation: KerasLayer[Tensor[T], Tensor[T], T] = null,
val innerActivation: KerasLayer[Tensor[T], Tensor[T], T] = null,
val dimOrdering: String = "CHANNEL_FIRST",
val subsample: Int = 1,
var wRegularizer: Regularizer[T] = null,
var uRegularizer: Regularizer[T] = null,
var bRegularizer: Regularizer[T] = null,
val returnSequences: Boolean = false,
val goBackwards: Boolean = false,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
require(dimOrdering.toLowerCase() == "channel_first", s"ConvLSTM2D currently only supports " +
s"format CHANNEL_FIRST, but got format $dimOrdering")
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
require(input.length == 5,
s"ConvLSTM2D requires 5D input, but got input dim ${input.length}")
val rows = KerasUtils.computeConvOutputLength(input(3), nbKernel, "same", subsample)
val cols = KerasUtils.computeConvOutputLength(input(4), nbKernel, "same", subsample)
if (returnSequences) Shape(input(0), input(1), nbFilter, rows, cols)
else Shape(input(0), nbFilter, rows, cols)
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val model = TSequential[T]()
if (goBackwards) model.add(Reverse(2))
val rec = com.intel.analytics.bigdl.nn.Recurrent[T]()
val layer = ConvLSTMPeephole(
inputSize = input(2),
outputSize = nbFilter,
kernelI = nbKernel,
kernelC = nbKernel,
stride = subsample,
activation = activation.doBuild(inputShape).asInstanceOf[TensorModule[T]],
innerActivation = innerActivation.doBuild(inputShape).asInstanceOf[TensorModule[T]],
wRegularizer = wRegularizer,
uRegularizer = uRegularizer,
bRegularizer = bRegularizer,
withPeephole = false)
rec.add(layer)
model.add(rec)
if (!returnSequences) model.add(Select(2, -1))
model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object ConvLSTM2D {
def apply[@specialized(Float, Double) T: ClassTag](
nbFilter: Int,
nbKernel: Int,
activation: String = "tanh",
innerActivation: String = "hard_sigmoid",
dimOrdering: String = "th",
subsample: Int = 1,
wRegularizer: Regularizer[T] = null,
uRegularizer: Regularizer[T] = null,
bRegularizer: Regularizer[T] = null,
returnSequences: Boolean = false,
goBackwards: Boolean = false,
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): ConvLSTM2D[T] = {
new ConvLSTM2D[T](nbFilter, nbKernel, KerasUtils.getKerasActivation(activation),
KerasUtils.getKerasActivation(innerActivation),
KerasUtils.toBigDLFormat5D(dimOrdering),
subsample, wRegularizer, uRegularizer, bRegularizer,
returnSequences, goBackwards, inputShape)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy