com.intel.analytics.bigdl.nn.keras.Embedding.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import com.intel.analytics.bigdl.nn.{AddConstant, InitializationMethod, LookupTable, RandomUniform, Zeros, Sequential => TSequential}
import scala.reflect.ClassTag
/**
* Turn positive integers (indexes) into dense vectors of fixed size.
* The input of this layer should be 2D.
*
* This layer can only be used as the first layer in a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param inputDim Int > 0. Size of the vocabulary.
* @param outputDim Int >= 0. Dimension of the dense embedding.
* @param init Initialization method for the weights of the layer. Default is RandomUniform.
* You can also pass in corresponding string representations such as 'uniform'
* or 'normal', etc. for simple init methods in the factory method.
* @param wRegularizer An instance of [[Regularizer]], (eg. L1 or L2 regularization),
* applied to the embedding matrix. Default is null.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class Embedding[T: ClassTag](
val inputDim: Int,
val outputDim: Int,
val init: InitializationMethod = RandomUniform,
var wRegularizer: Regularizer[T] = null,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
require(input.length == 2,
s"Embedding requires 2D input, but got input dim ${input.length}")
Shape(input(0), input(1), outputDim)
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val model = TSequential[T]()
model.add(AddConstant(1.0))
val layer = LookupTable(
nIndex = inputDim,
nOutput = outputDim,
wRegularizer = wRegularizer)
layer.setInitMethod(weightInitMethod = init)
model.add(layer)
model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object Embedding {
def apply[@specialized(Float, Double) T: ClassTag](
inputDim: Int,
outputDim: Int,
init: String = "uniform",
wRegularizer: Regularizer[T] = null,
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): Embedding[T] = {
new Embedding[T](inputDim, outputDim, KerasUtils.getInitMethod(init),
wRegularizer, inputShape)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy