com.intel.analytics.bigdl.nn.keras.Input.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.{Input => TInput}
import com.intel.analytics.bigdl.nn.Graph.ModuleNode
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Node, Shape}
import scala.reflect.ClassTag
@deprecated("com.intel.analytics.bigdl.nn.keras is deprecated in BigDL 0.11, " +
"and will be removed in future releases", "0.10.0")
class Input[T: ClassTag](val inputShape: Shape)(implicit ev: TensorNumeric[T])
extends KerasLayer[Activity, Activity, T](KerasLayer.addBatch(inputShape)) {
private var skipDuplicate = false
private[Input] def setSkipDuplicate(): this.type = {
this.skipDuplicate = true
this
}
override def computeOutputShape(inputShape: Shape): Shape = inputShape
override def doBuild(inputShape: Shape): TInput[T] = new TInput[T]()
override def allowRebuilt(): Boolean = true
override def skipDuplicateCheck(): Boolean = skipDuplicate
}
object Input {
def apply[T: ClassTag](
inputShape: Shape = null,
name : String = null)(implicit ev: TensorNumeric[T]): ModuleNode[T] = {
// As this method return a node, so it cannot be added to a container or connect from other
// nodes multiple times. So we can skip the duplicate checking.
// Even it is repeated appears multiple time in a nested container, it's okay as it will always
// be the first layer.
val module = new Input(inputShape).setSkipDuplicate()
module.build(KerasLayer.addBatch(inputShape))
if (name != null) {
module.setName(name)
}
new Node(module.asInstanceOf[AbstractModule[Activity, Activity, T]])
}
}
object InputLayer {
def apply[T: ClassTag](
inputShape: Shape = null,
name : String = null)(implicit ev: TensorNumeric[T]): KerasLayer[Activity, Activity, T] = {
val module = new Input(inputShape)
if (name != null) {
module.setName(name)
}
module
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy