com.intel.analytics.bigdl.nn.keras.Permute.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.Transpose
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* Permutes the dimensions of the input according to a given pattern.
* Useful for connecting RNNs and convnets together.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param dims Int array. Permutation pattern, does not include the batch dimension.
* Indexing starts at 1.
* @tparam T The numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class Permute[T: ClassTag](
val dims: Array[Int],
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
private def permToPair(perm: Array[Int]): Array[(Int, Int)] = {
val numToRank = perm.zipWithIndex.toMap
val arr = perm.indices.toArray
val pairs = ArrayBuffer[(Int, Int)]()
def sort(arr: Array[Int], low: Int, high: Int): Unit = {
var i = low
var j = high
val pivot = arr(low + (high - low)/2)
while (i <= j) {
while (arr(i) < pivot) i += 1
while (arr(j) > pivot) j -= 1
if (i <= j) {
exchangeNumbers(arr, i, j)
i += 1
j -= 1
}
}
if (low < j) sort(arr, low, j)
if (i < high) sort(arr, i, high)
}
def exchangeNumbers(arr: Array[Int], i: Int, j: Int): Unit = {
val temp = arr(i)
arr(i) = arr(j)
arr(j) = temp
pairs += ((i, j))
}
sort(arr.map(numToRank), 0, arr.length-1)
pairs.filter(pair => pair._1 != pair._2).toArray
}
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
val outputShape = input.clone()
var i = 0
while (i < dims.length) {
outputShape(i + 1) = input(dims(i))
i += 1
}
Shape(outputShape)
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val swaps = permToPair(dims.map(x => x - 1)).map(pair => (pair._1 + 2, pair._2 + 2))
val layer = Transpose(swaps)
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object Permute {
def apply[@specialized(Float, Double) T: ClassTag](
dims: Array[Int],
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): Permute[T] = {
new Permute[T](dims, inputShape)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy