com.intel.analytics.bigdl.nn.mkldnn.SelectTable.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.mkldnn
import com.intel.analytics.bigdl.nn.{Utils => NNUtils}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Creates a module that takes a table as input and outputs the element at index `index`
* (positive or negative). This can be either a table or a Tensor.
* The gradients of the non-index elements are zeroed Tensors of the same size.
* This is true regardless of the depth of the encapsulated Tensor as the function used
* internally to do so is recursive.
* @param index the index to be selected
*/
@SerialVersionUID(- 7562114420457472987L)
class SelectTable(val index: Int)(implicit ev: TensorNumeric[Float]) extends MklDnnLayer {
override def updateOutput(in: Activity): Activity = {
val input = in.asInstanceOf[Table]
val index = if (this.index < 0) input.length() + this.index else this.index
require(input.contains(index), "index does not exist in the input table")
output = input[Activity](index)
output
}
override def updateGradInput(in: Activity, gradOutput: Activity): Table = {
val input = in.asInstanceOf[Table]
gradInput = T()
NNUtils.zeroTableCopy(gradInput.asInstanceOf[Table], input)
val index = if (this.index < 0) {
input.length() + this.index + 1
} else {
this.index
}
NNUtils.recursiveCopy(gradInput.asInstanceOf[Table](index), gradOutput)
require(gradInput.asInstanceOf[Table].contains(index), "Index exceeds the size of input table")
gradInput.asInstanceOf[Table]
}
override def toString: String = s"mkldnn.SelectTable($index)"
override def canEqual(other: Any): Boolean = other.isInstanceOf[SelectTable]
override def equals(other: Any): Boolean = other match {
case that: SelectTable =>
super.equals(that) &&
(that canEqual this) &&
index == that.index
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), index)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override private[mkldnn] def initFwdPrimitives(inputs: Array[MemoryData], phase: Phase) = {
_inputFormats = inputs
_outputFormats = Array(inputs(index - 1))
(inputs, _outputFormats)
}
override private[mkldnn] def initBwdPrimitives(grad: Array[MemoryData], phase: Phase) = {
_gradInputFormats = Array(grad(index - 1))
_gradOutputFormats = grad
(grad, _gradInputFormats)
}
}
object SelectTable {
def apply(dimension: Int)(implicit ev: TensorNumeric[Float]) : SelectTable = {
new SelectTable(dimension)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy