All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.nn.mkldnn.SelectTable.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.intel.analytics.bigdl.nn.mkldnn

import com.intel.analytics.bigdl.nn.{Utils => NNUtils}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}

import scala.reflect.ClassTag

/**
 * Creates a module that takes a table as input and outputs the element at index `index`
 * (positive or negative). This can be either a table or a Tensor.
 * The gradients of the non-index elements are zeroed Tensors of the same size.
 * This is true regardless of the depth of the encapsulated Tensor as the function used
 * internally to do so is recursive.
 * @param index the index to be selected
 */
@SerialVersionUID(- 7562114420457472987L)
class SelectTable(val index: Int)(implicit ev: TensorNumeric[Float]) extends MklDnnLayer {

  override def updateOutput(in: Activity): Activity = {
    val input = in.asInstanceOf[Table]
    val index = if (this.index < 0) input.length() + this.index else this.index

    require(input.contains(index), "index does not exist in the input table")
    output = input[Activity](index)

    output
  }

  override def updateGradInput(in: Activity, gradOutput: Activity): Table = {
    val input = in.asInstanceOf[Table]
    gradInput = T()
    NNUtils.zeroTableCopy(gradInput.asInstanceOf[Table], input)
    val index = if (this.index < 0) {
      input.length() + this.index + 1
    } else {
      this.index
    }

    NNUtils.recursiveCopy(gradInput.asInstanceOf[Table](index), gradOutput)

    require(gradInput.asInstanceOf[Table].contains(index), "Index exceeds the size of input table")

    gradInput.asInstanceOf[Table]
  }

  override def toString: String = s"mkldnn.SelectTable($index)"


  override def canEqual(other: Any): Boolean = other.isInstanceOf[SelectTable]

  override def equals(other: Any): Boolean = other match {
    case that: SelectTable =>
      super.equals(that) &&
        (that canEqual this) &&
        index == that.index
    case _ => false
  }

  override def hashCode(): Int = {
    val state = Seq(super.hashCode(), index)
    state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
  }

  override private[mkldnn] def initFwdPrimitives(inputs: Array[MemoryData], phase: Phase) = {
    _inputFormats = inputs
    _outputFormats = Array(inputs(index - 1))
    (inputs, _outputFormats)
  }

  override private[mkldnn] def initBwdPrimitives(grad: Array[MemoryData], phase: Phase) = {
    _gradInputFormats = Array(grad(index - 1))
    _gradOutputFormats = grad
    (grad, _gradInputFormats)
  }
}

object SelectTable {
  def apply(dimension: Int)(implicit ev: TensorNumeric[Float]) : SelectTable = {
    new SelectTable(dimension)
  }
}





© 2015 - 2025 Weber Informatics LLC | Privacy Policy