com.intel.analytics.bigdl.nn.mkldnn.Utils.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.mkldnn
import com.intel.analytics.bigdl.mkl.Memory
import com.intel.analytics.bigdl.nn.MklInt8Convertible
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.nn.mkldnn.Phase.InferencePhase
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.T
private[bigdl] object Utils {
def copyMaskAndScales(from: MemoryData, to: MemoryData): Unit = {
// here we check the from and to, they should not be null ideally
// but if the model is mixin with blas layer, it may be null
if (from != null && to != null && to.scales.isEmpty) {
to.setScales(from.scales.clone())
to.setMask(from.mask)
}
}
def copyMaskAndScales(from: Array[MemoryData], to: Array[MemoryData]): Unit = {
// here we check the from and to, they should not be null ideally
// but if the model is mixin with blas layer, it may be null
if (from == null || to == null) return
val valid = (from.length == 1 || to.length == 1) || // the ConcatTable or JoinTable
(from.length == to.length) // the same length of from and to.
// if from has scales but to has no, copy them
val needCopy = from.ne(to) && from.forall(_.scales.nonEmpty) && to.forall(_.scales.isEmpty)
if (valid && needCopy) {
if (from.length == to.length) {
to.zip(from).foreach(x => if (x._1.scales.isEmpty) {
x._1.setScales(x._2.scales)
x._1.setMask(x._2.mask)
})
} else if (to.length == 1) {
to.head.setScales(from.map(_.scales).transpose.map(_.max))
require(from.map(_.mask).distinct.length == 1, s"only support the same mask")
to.head.setMask(from.map(_.mask).distinct.head)
} else if (to.length > 1) {
to.foreach(_.setScales(from.head.scales))
to.foreach(_.setMask(from.head.mask))
}
}
}
def getDefaultFormat(memoryData: MemoryData, isInOrOut: Boolean = true): Int = {
memoryData.shape.length match {
case 2 => if (isInOrOut) Memory.Format.nc else Memory.Format.oi
case 4 => if (isInOrOut) Memory.Format.nchw else Memory.Format.oihw
case _ => throw new UnsupportedOperationException("Linear only supports 2-D or 4-D")
}
}
private def denseTensor(format: MemoryData, tensor: Tensor[Float],
isInOrOut: Boolean = true, runtime: MklDnnRuntime): Tensor[Float] = {
val reorder = ReorderMemory(HeapData(format.shape, getDefaultFormat(format, isInOrOut)))
reorder.setRuntime(runtime)
reorder.initFwdPrimitives(Array(format), InferencePhase)
reorder.forward(tensor).toTensor[Float]
}
private def denseActivity(formats: Array[MemoryData], activity: Activity,
isInOrOut: Boolean = true, runtime: MklDnnRuntime): Activity = {
val ret = if (formats.length > 1) { // table
require(formats.length == activity.toTable.length(),
s"formats should be the same as activity")
val table = T()
var i = 1
while (i <= formats.length) {
val format = formats(i - 1)
val tensor = activity.toTable.get[Tensor[Float]](i).get
table(i) = denseTensor(format, tensor, isInOrOut, runtime)
i += 1
}
table
} else { // tensor
denseTensor(formats(0), activity.toTensor[Float], isInOrOut, runtime)
}
ret
}
def getDenseIn(module: MklInt8Convertible, input: Activity): Activity = {
if (module.isInstanceOf[MklDnnModule]) {
val mklDnnLayer = module.asInstanceOf[MklDnnModule]
Utils.denseActivity(mklDnnLayer.inputFormats(), input, true, mklDnnLayer.getRuntime)
} else {
input
}
}
def getDenseOut(module: MklInt8Convertible, output: Activity): Activity = {
if (module.isInstanceOf[MklDnnModule]) {
val mklDnnLayer = module.asInstanceOf[MklDnnModule]
Utils.denseActivity(mklDnnLayer.outputFormats(), output, true, mklDnnLayer.getRuntime)
} else {
output
}
}
private def setConvNegativeInput(module: MklInt8Convertible, input: Activity): Unit = {
if (module.isInstanceOf[SpatialConvolution]) {
val conv = module.asInstanceOf[SpatialConvolution]
val denseIn = getDenseIn(module, input)
val min = denseIn.toTensor[Float].min()
if (min >= 0.0f) {
conv.negativeInput = false
}
}
}
def calcScales(module: AbstractModule[_, _, _], input: Activity): Unit = {
module match {
case mkldnnModule: MklInt8Convertible =>
mkldnnModule.calcScales(input)
Utils.setConvNegativeInput(mkldnnModule, input)
case _ =>
}
}
def getOutput(module: AbstractModule[_, _, _], input: Activity): Activity = {
module match {
case mklDnnModule: MklDnnModule => module.output.asInstanceOf[Activity]
case _ => module.output.asInstanceOf[Activity]
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy